The Milky Way halo - stars and gas Bonn 2007

Contrasting the Milky Way and M31 satellite galaxies

Alan W. McConnachie

University of Victoria

I. Satellite distributions

The M31 satellite system

McConnachie & Irwin (2006a) (distances from McConnachie et al. 2005)

M31						
	mean	median sigma				
X	58	45	13			
У	-55	-17	18			
Z	-25	-7	8			

MW						
	mean	an median sigm				
X	19	-7	14			
γ	3	8	26			
Z	-43	-17	28			

2. The structure of the dwarf spheroidal satellites

MW: Irwin & Hatzidimitriou (1995)

M31: McConnachie & Irwin (2006b)

MW dSph structural parameters	Galaxy	r _e	r _c	F _t	$\mathbf{r}_{c,g}$	$\mathbf{I}_{t,g}$	с	$\Gamma_{1/2,g}$
See more recent studies by		(archini)	(archini)	(archini)	(pc)	(pc)		(pc)
•Odenkirchen et al. (2001) [Draco]	Carina	5.5	8.8 +1.2	28.8 ±3.6	177 ± 28	581 ±86	0.51 ±0.08	$137 \\ \pm 22$
 Palma et al. (2003) [UMi] Majewski et al. (2000, 2005) Muñoz et 	Draco	4.5	9.0 ±0.7	28.3 ±2.4	158 ±14	498 ±47	0.50 ±0.05	120 ±11
al. (2006) [Carina]	Fornax	9.9	13.7 + 1.2	71.1 +4.0	400 +43	2078 + 177	0.72 +0.05	339 + 36
•Westfall et al. (2006) [Sculptor] •Sohn et al. (2006) [Leo I]	Leo I	2.0	3.3 ±0.3	12.6 ±1.5	169 ±19	645 ±87	0.58 ±0.07	133 ±15
•Koch et al. (2006) [Leo I, Leo I]	Leo II	1.5	2.9 ±0.6	8.7 ±0.9	162 ±35	487 ±60	0.48 ±0.10	123 ±27
	Sculptor	6.8	5.8 ±1.6	76.5 ±5.0	101 ±28	1329 ±107	1.12 ±0.12	94 ±26
Previously,	Sextans	15.5	16.6 ±1.2	160.0 ±50.0	322 ±42	3102 ±1028	0.98 ±0.14	294 ±38
•Caldwell et al. (1992)	Ursa Minor	10.1	15.8 ± 1.2	50.6 ±3.6	196 ±24	628 ±74	0.51 ±0.05	150 ±18
•Caldwell (1999)								

		King profile						
	χ^2	$r_{\rm c}$ (arcmin)	$r_{\rm t}$ (arcmin)	$r_{\rm c}$ (kpc)	$r_{\rm t}$ (kpc)	$c = \log_{10}(r_{\rm t}/r_{\rm c})$		
Andromeda I	1.01	2.7 ± 0.3	10.4 ± 0.9	0.58 ± 0.06	2.3 ± 0.2	0.59 ± 0.06		
Andromeda II	1.84	5.2 ± 0.2	22.0 ± 1.0	0.99 ± 0.04	4.2 ± 0.2	0.63 ± 0.03		
Andromeda III	0.89	1.3 ± 0.2	7.2 ± 1.2	0.29 ± 0.04	1.5 ± 0.3	0.74 ± 0.10		
Andromeda V	1.02	1.2 ± 0.2	5.3 ± 1.0	0.28 ± 0.04	1.2 ± 0.2	0.63 ± 0.11		
Andromeda VI	0.96	2.1 ± 0.2	6.2 ± 0.4	0.48 ± 0.06	1.4 ± 0.1	0.46 ± 0.06		
Andromeda VII	0.91	2.0 ± 0.1	19.3 ± 1.6	0.45 ± 0.02	4.3 ± 0.4	0.98 ± 0.04		
Cetus	1.00	1.3 ± 0.1	32.0 ± 6.5	0.29 ± 0.02	7.1 ± 1.5	1.40 ± 0.10		

Μ,

Peñarrubia, McConnachie & Navarro (2007)

(Equilibrium) I. MW and M31 satellites occupy similar haloes?

•expect difference in velocity dispersions

2. MW and M31 have similar velocity dispersions

> haloes would be less massive around M31

Peñarrubia, Navarro & McConnachie (2007)

(Tides)

3. MW and M31 dSphs have been affected by different amounts due to tidal effects?

•cannot evolve a M31 satellite into an MW satellite, or vice-versa

McConnachie, Penarrubia & Navarro (2007)

Dynamical structure of two stellar components

MW satellites: photometry extending below the oldest main sequence turn-off. Good handle on age/metallicity degeneracy. Allows for detailed reconstruction of SFH based on monte-carlo simulations of stellar populations.

HST WFPC2 deep photometry

Da Costa, Armandroff: 1996, 2000, 2002

sub-horizontal branch imaging (red giant branch, horizontal branch, red clump, asymptotic giant branch).Vulnerable to age/metallicity degeneracies, SFH precision reduced

Summary

- •MW missing satellites at low latitude; M31 has isotropic distribution with latitude
- •Radial distribution of M31 system twice as extended as MW
- •'Streams of satellites' might exist around M31, but they are not statistically significant given data quality
- •M31 satellite distribution highly anisotropic. WHY?
- •Some M31 satellites show evidence of tidal disruption
- •M31 dSphs are 2 3 times more extended than for MW. Formation? Evolution? Tides do not appear to explain it
- •SFHs of M31 dwarfs are not of same quality as for MW; no obvious strong young populations for M31 dSphs, intermediate ages are present. More data needed