Conference "The Milky Way Halo" at AIfA, Bonn, 29 May – 2 June 2007

# Galactic halo ultracool subdwarfs crossing the Solar neighbourhood

Ralf-Dieter ScholzImage: Constitut PotsdamAstrophysikalisches Institut PotsdamAIP

### in collaboration with:

- Hartmut Jahreiß @ Heidelberg
- Ingo Lehmann @ (Potsdam Garching ) Potsdam
- Nicolas Lodieu @ (Potsdam Leicester ) Tenerife
- Mark McCaughrean @ (Potsdam ) Exeter
- Helmut Meusinger @ Tautenburg
- Siegfried Röser @ Heidelberg
- Elena Schilbach @ Heidelberg
- Hans Zinnecker @ Potsdam

# Subdwarfs in the 10pc sample



348 objects, incl. 4 sd and 18 wd (Henry et al. 2006)

# The class(es) of subdwarfs

- Kuiper (1939): stars up to 2-3 mag below the main sequence selected "mainly on the basis of abnormally high transverse motion under the assumption of the star being a normal dwarf" (spectral types A, F, G, K)
- Subdwarfs are metal-deficient stars
- Hot subdwarfs (sdO, sdB)
- Later types (sdF, sdG) are already called "cool"
- Really cool subdwarfs (sdK, sdM) and the new class of ultracool subdwarfs (>sdM7, sdL, sdT substellar subdwarfs)
  - typically thick disk or halo kinematics
  - lifetimes larger than age of the Galaxy representatives of 1st generations of stars



Burgasser, Cruz & Kirkpatrick (2007) not yet included]

5

6400

(b)

6800

λ (Å)

7000

7200

7400

## Proper motion as a rough distance measure

- Proper motion µ = apparent motion on the sky (large values range from ~0.1 to ~10 arcsec/yr)
- Real velocity [in km/s] can only be estimated if the distance from the Sun d [in pc] is known:  $v_{tan} = 4.76 \cdot \mu \cdot d$
- Typical relative velocity of local Galactic disk stars  $\sim 40$  km/s
- Disk star with  $\mu = 1$  arcsec/yr has typically d ~ 10 pc
- Halo stars do not take part in Galactic rotation (~220 km/s at the location of the Sun)  $\rightarrow$  same  $\mu$  indicates 5 times larger distance



# Proper motion samples are halo biased

Galactic space velocities UVW for proper motion stars from Lepine, Shara & Rich (2003):

#### Normal red dwarfs

red subdwarfs



Dotted and dashed ellipses - 2σ velocity dispersions of local disk and halo stars, respectively (Chiba & Beers 2000)

<u>Solid circles</u> - limit for stars gravitationally bound to the Galaxy (model of Dauphole & Colins 1999)



# **Recent discoveries with** $\mu > 2$ arcsec/yr

| Name                     | proper                                      | Discovery paper           | Distance     | object        |
|--------------------------|---------------------------------------------|---------------------------|--------------|---------------|
|                          | motion                                      |                           | (reference)  | type          |
|                          | $[\operatorname{arcsec}/\operatorname{yr}]$ |                           | [pc]         |               |
| SO $0253 + 1652$         | 5.11                                        | Teegarden+03              | 3.84(1)      | disk M $6.5$  |
| $\varepsilon$ Indi Ba,Bb | 4.70                                        | Scholz+03, McCaughrean+04 | 3.625(2)     | disk T $1+T6$ |
| SSSPM 1444 - 2019        | 3.51                                        | Scholz+04b                | $\sim 20$    | halo $sdM9$   |
| $2MASS \ 1114-2618$      | 3.05                                        | Tinney+05                 | ${\sim}7$    | disk T $7.5$  |
| SCR 1845 - 6357          | 2.66                                        | Pokorny+03, Hambly+04     | 3.854(1)     | disk M $8.5$  |
| 2MASS 0532 + 8246        | 2.60                                        | Burgasser+03              | $\sim 20$    | halo $sdL7$   |
| PM 13420 - 3415          | 2.55                                        | Lépine, Rich & Shara 05   | $\sim \! 18$ | halo WD       |
| LEHPM 3396               | 2.45                                        | Pokorny+03, Phan Bao+06   | ${\sim}8$    | disk M9.0     |
| LSR $1826 + 3014$        | 2.38                                        | Lépine+02                 | $\sim 14$    | halo $M8.5$   |
| F351-50                  | 2.33                                        | Ibata+00                  | 35(4)        | halo cool WD  |
| 2MASS 0415 - 0935        | 2.26                                        | Burgasser+02              | 5.74(3)      | disk T $8.5$  |
| $2MASS \ 0251 - 0352$    | 2.17                                        | Cruz+03, Schmidt+07       | $\sim \! 12$ | disk(?) L3.0  |
| SCR 1138 - 7721          | 2.15                                        | Hambly+04, Scholz+04a     | 8.18(1)      | disk M5.5     |

Trigonometric parallax references: 1 - Henry+06, 2 - ESA 97, 3 - Vrba+04, 4 - Ducourant+07

#### 13 new discoveries since 2000 - compared to 73 known LHS stars!

# New high proper motion survey using SSS

goal

Compared to previous efforts needed to conduct a high proper motion survey (e.g. Luyten Half Second = LHS) ...

#### Willem Jacob Luyten (1899-1994)



... it is now much easier thanks to digitised observations & convenient access to public data bases, e.g. the SuperCOSMOS Sky Surveys (SSS)



IEA ROE

Coverage | Documentation | History | Links

WFAU, Institute for Astronomy, Royal Observatory, Blackford Hill Edinburgh, EH9 3HJ, UK Tel +44 131 668 8356 (office) or +44 131 668 8100 (switchboard)

M.Read@roe.ac.uk 08-May-2001

- Fill the gaps in Southern sky
- Extend the magnitude limit
- Find cooler nearby objects (bd)
- Find cool halo objects (wd, sd)

R.-D. Scholz: talk at "The Milky Way Halo", Bonn, 29 May- 2 June 2007



R.-D. Scholz: talk at "The Milky Way Halo", Bonn, 29 May- 2 June 2007

### Is SSPM 1444 a substellar subdwarf?



# More ultracool subdwarfs among SSSPM objects



Scholz, Lehmann, et al. (2004)

# Not a nearby WD but a distant halo subdwarf !



Farihi, Wood & Stalder (2005)

#### Hyper-velocity subdwarf (candidates) from NLTT (to be confirmed by higher-resolution spectroscopy)



## Subdwarf colours – comparison with models



Scholz, Lodieu & McCaughrean (2004)



R.-D. Scholz: talk at "The Milky Way Halo", Bonn, 29 May- 2 June 2007

# Spectral sequence + list of all ultracool subdwarfs

| Source                                                                                                                                                     | Spectral Type                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| LSR 1610-0040<br>SSSPM 1444-2019<br>2MASS 1640+1231                                                                                                        | d/sdM7:<br>d/sdM9<br>d/sdM9                                                 |
| 2MASS 0937+2931                                                                                                                                            | d/sdT6                                                                      |
| LHS 377<br>SSSPM 1930-4311<br>LSR 2036+5059<br>LSR 1425+7102<br>2MASS 0142+0523<br>SSSPM 1013-1356<br>SDSS 1256-0224<br>2MASS 1626+3925<br>2MASS 0532+8246 | sdM7<br>sdM7<br>sdM7.5<br>sdM8<br>sdM8.5<br>sdM9.5<br>sdL4:<br>sdL4<br>sdL4 |
| APMPM 0559-2907                                                                                                                                            | esdM7                                                                       |
| LEHPM 2–59                                                                                                                                                 | esdM8                                                                       |

Burgasser, Cruz & Kirkpatrick (2007) and references therein

# **Conclusions and outlook**

- High proper motion surveys continue to play an important role in finding new ultracool subdwarfs
- Classification spectroscopy with sufficient signal-to-noise and including blue optical wavelengths helps to distinguish nearby cool white dwarfs and more distant cool subdwarfs
- Trigonometric parallaxes are necessary for accurate UVW
- Existing classification scheme needs extension for >sdM7
- In addition to extreme subdwarfs (esd) with [m/H]~ -2.0 and normal subdwarfs (sd) with [m/H] = -1.5...-1.0 there are ultracol halo objects with moderately low-metallicity [m/H] ~ -0.5
- First high-resolution spectra (2MASS 0532 !!) have provided accurate RVs and rotational velocities (Reiners & Basri 2006)