Mass Loss from Red Giants

D. Reimers, R. Baade, H.-J. Hagen Hamburger Sternwarte, Universität Hamburg

Halo stars - Pop II

Only *indirect* evidence:

- masses of RR Lyr stars
- subdwarfs

 \Rightarrow A star of 1 M_{\odot} loses ~ 0.2 M_{\odot} on the 1. RGB

Where is the gas from red giant mass loss in globular clusters?

There is not a single measurement of dM/dt for a Pop II star!

Pop I stars

Extensive direct evidence Winds in red giants, AGB stars, ...

Reliable mass-loss rates available? For only half a dozen stars!

Reliable mass-loss rates available as a function of stellar parameters? No!

Best indirect evidence

white dwarfs in galactic clusters:

- 4 WDs in NGC 2516: $M_{\rm WD} \approx 8 \, {\rm M}_{\odot}$
- Initial final mass relation for white dwarfs

Most reliable massloss rates are from binaries where a companion probes the wind of the giant.

	\dot{M} (M $_{\odot}$ yr ⁻¹)	v _w (km/s)
α Her	2.4×10 ⁻⁷	8
ζAur	5×10 ⁻⁹	70
α Sco	~ 10 ^{−6}	20
32 Cyg	1.5×10 ⁻⁸	90
Further stars: 31 Cyg, 22 Vul, δ Sge, HR 6902		
α Ori	2×10 ⁻⁶ (21 cm H I)	11

How reliable are these numbers? The most (best) studied system is α Sco A + B:

- Optical: Kudritzki & Reimers (1978) \Rightarrow 7×10⁻⁷ M_{\odot} yr ⁻¹
- Radio: Hjellming & Newell (1983) $\Rightarrow 2 \times 10^{-6} M_{\odot} \text{ yr}^{-1}$
- IUE: Hagen, Hempe & Reimers (1987) ⇒ $2.5 \times 10^{-7} \dots 1.6 \times 10^{-6} M_{\odot} \text{ yr}^{-1}$
- HST: Baade & Reimers (2007) \Rightarrow Mass loss episodic, continuous wind ~ 3×10⁻⁷ M $_{\odot}$ yr ⁻¹
- UVES / VLT Nebula \Rightarrow 7.9 $\times 10^{-7}$ M_{\odot} yr ⁻¹

Optical observations of A + B

- Ti II in optical UV at 3383.8 Å + excited fine structure lines with the assumption of a spherically expanding wind
- v(Ti II) ⇒ Location of α Sco B relative to plane of the sky: 500 AU in front
- Spectral analysis of α Sco B \Rightarrow N (LyC) \Rightarrow H II - region predicted $\Rightarrow M \approx 7 \times 10^{-7} M_{\odot} \text{ yr}^{-1}$

Kudritzki & Reimers (1978)

<u>IUE</u>

- Many ions: Fe II, Si II, O I, S II, Al II, ...
 P Cyg type profiles
- v.d. Hucht et al. (1980), Bernat (1982) $\Rightarrow 10^{-5} M_{\odot} \text{ yr}^{-1}$ (from 0 eV lines!) IS Contamination
- Hagen, Hempe & Reimers (1987) \Rightarrow Fe II, Si II: 10⁻⁶ M_{\odot} yr ⁻¹ ± factor 3

Hagen et al. (1987)

Hagen et al. (1987)

VLA

Hjellming & Newell (1983)

Radio f-f emission from the H II region (optically thin)

 \Rightarrow N_{LyC} ≈ 3×10⁴³ photons/s

⇒ $\dot{M} \approx 2 \times 10^{-6}$ M_☉ yr ⁻¹ (with an assumed position of B behind the plane of the sky)

Hjellming & Newell (1983)

<u>HST / GHRS</u>

Baade & Reimers (2007)

 P Cyg profiles with little reemission (small aperture compared to IUE LAP)

Baade & Reimers (2007)

• component 4 (at -20 km/s) is the continuous wind

- Ti II only seen in component 4
- depletion in components 2 and 3, IS contamination in component 1

- Al III shows that the B star is ~ 200 AU behind the plane of the sky
- continuous wind $\sim 3 \times 10^{-7} \text{ M}_{\odot} \text{ yr}^{-1}$
- Episodic mass-loss?
 Shells, clouds?
 Geometry unknown!

Mid-infrared images of the CS dust

Marsh et al. (2001)

Mass Loss from Red Giants 20/33

The Antares Nebula

• Discovered by O.C. Wilson & R.F. Sanford (1937) at Mt. Wilson \Rightarrow [Fe II] lines around the B star

Extensive discussion in Struve & Zebergs: Astronomy of the 20th Century p. 302 ff: "It is strange that the nebulously around the B type star shows only emission lines of [FeII] and Sill but *not* those of hydrogen"

"metal rich environment", "vaporized meteors"

Struve: "Improbable hypothesis which may have to be abandoned in the light of future work" (1962)

 Mapped by Swings & Preston (1978) with photographic long slit spectra taken with Coudé at 100" Mt. Wilson and 200" Mt. Palomar.

 \Rightarrow [Fe II] lines + Si II 3856/3862

Possibly H α : very weak (apparently seen on one of Deutsch's plates)

Strong lines in a region with 3.5" diameter

Weak emission extends up to 15"

• UVES / VLT (2006)

R = 80 000 long slit 0.3 /10", Seeing 0.5" - 0.7", 100 spectra

UVES spectra show heavy contamination with M giant light even 10" from the M star

 \Rightarrow extremely elaborate data reduction

New results:

- H α , H β , H γ , H δ , H ϵ seen, weaker than [FeII] H α extent identical with f-f emission (VLA)
- [Fe II], Fe II, Si II, [Ni II]
 but no [O II], [O III], [S II], ...

6562.85 Halpha

Mass Loss from Red Giants 25/33

Mass Loss from Red Giants 26/33

6347.11 Si II

Mass Loss from Red Giants 27/33

- [FeII] also observed *outside* the H II region

At 45° position, [Fe II] extends all along the slit

- \Rightarrow excitation by Fe II UV resonance scattering e.g. scattering on UV FeII 2344.2 Å (observed)
- \Rightarrow downward transition 5169, 5018, 4924 Å (observed)
- \Rightarrow upper level of strong [Fe II] 4287, 4359 Å

D. Reimers, May 30, 2007

Mass Loss from Red Giants 28/33

Mass Loss from Red Giants 29/33

H II region geometry

- H α , Si II come from the H II region
- [FeII] from the H II/H I boundary = shock front
- bow shock with bended tail due to movement of the B star and $t_{rec} \leq t_{windtravel}$
- the B star is ~ 200 AU *behind* the plane of the sky of the M star
- orbit of α Sco A + B: sin i \approx 1 P \approx 2600 years
- mass-loss rate from the shape of the H II region: (7.9 \pm 3.5) $\times 10^{\text{-7}}$ M_{\odot} yr $^{\text{-1}}$

Mass Loss from Red Giants 32/33

Conclusions

- Mass loss rates of red giants are difficult to measure
- Multiple shells (episodic mass loss) common
- A lot of research is necessary before we understand mass loss in red giants
- At present, indirect methods for determining the total loss of mass in advanced stages of evolution are probably more accurate

Figure References

- Baade, R., & Reimers, D. 2007, A&A (in press)
- Hagen, H.-J., Hempe, K., & Reimers, D. 1987, A&A 184, 256
- Hjellming, R. M., & Newell, R. T. 1983, ApJ 275, 704
- Kudritzki, R. P., & Reimers, D. 1978, A&A 70, 227
- Marsh, K. A., Bloemhof, E. E., Koerner, D. W., & Ressler, M. E. 2001, ApJ 548, 861