### The Outer Halo in SEGUE

Heather Morrison

Department of Astronomy, Case

#### collaborators:

Dave Starinshak, Ethan Engle, Andrew Schechtman-Rook (Case students)

and

Paul Harding, Connie Rockosi, Tim Beers, Jennifer Johnson, John Norris, Brian Yanny, James Clem, Sivarani Thirupathi

(thanks to Eric Bell for the subtraction idea .....)

# How was the halo formed? Streams as icing or cake?



Field of Streams: Belokurov et al 2006

# Photometric search for streams using turnoff stars

- Yanny/Newberg pioneered this technique with SDSS data
- Stars selected at turnoff color for old, metal-poor population: box in (g,g-r)
- Distance from magnitude
- Limit ~35 kpc for SDSS imaging data

## Could we use K giants??

- Simple color cut will not work: there are many foreground K dwarfs belonging to the disk;
- They outnumber the more distant K giants
- However, K giants will probe to much higher distances (50-100 kpc)

## Use spectra to quantify disk dwarf numbers

- K dwarfs will only be 1-2 kpc away at most
- Their numbers should change slowly with (l,b)
- Model and subtract foreground disk from K star counts using spectroscopic plates
- What remains should be distant K giants

## How to identify giants/dwarfs



NGC 7789 is roughly solar abundance Only dwarfs should be above NGC7789 line



### Dwarf spectra



#### Giant spectra



g= 14-16

### Field-to-field variation?

- Overall trend of success rate with galactic longitude, as expected
- Some interesting variations over small spatial scales, can be caused by
  - --- different target selection algorithms
  - --- variations in photometric zeropoints

#### OR

--- star streams!

## How to make a field of streams for giants:

- Use photometry to get numbers of stars in each target type per plate
- This will give absolute numbers of disk dwarfs per plate

Subtract!!

## Velocity distributions





Red: giants

Black: foreground dwarfs



Similar velocity substructure seen at NGP by Kinman et al 2007, Newberg/Yanny 2006, Vivas et al (this meeting)

Unlikely to be Sgr tails

#### For example:

Two NGP fields with high giant success rate

Giants have distances of ~15 kpc

Virgo overdensity?



Bell et al 2007

## Could we remove Sgr please?





Law et al 2005



At least 12 separate plates contain Sgr debris in the South



## Star streams: icing or cake?

Icing: there are some smooth velocity fields





Cake: there are about the same number of fields with clear velocity substructure





## Summary

K giants with distances of 15-40 kpc show roughly equal numbers with velocity substructure and with well mixed distributions: the halo has many streams (cf de Jong, Vivas talks)

Prospects for a more distant "field of streams" using K giants look good