The most metal-poor dwarfs of the binary CS 22876-032: Abundances and 3D effects

Jonay Isaí González Hernández

Observatoire de Paris-Meudon (GEPI) Cosmological Impact of the First Stars (CIFIST Marie Curie team)

The Milky Way Halo – Star and Gas- Locations, Motions, Origins Bonn, 29 May – 2 June 2007

Collaborators

* From Observatoire de Paris (GEPI, France)

- P. Bonifacio, H. –G. Ludwig, E. Caffau, M. Spite, F. Spite,
- R. Cayrel, V. Hill, P. François

* From Istituto Nazionale di Astrofisica – Observatorio Astronomico di Trieste (Italy)

P. Molaro

* From Department of Physics & Astronomy and JINA (USA)

T. C. Beers, T. Sivarani

* From GRAAL, Université de Montpellier (France)

B. Plez

- * From The Niels Bohr Institute, Astronomy (Denmark)
 - J. Andersen, B. Nordström
- * From Univarsidade de Sao Paulo (Brazil)

B. Barbuy

- From Las Cumbres Observatory, California (USA)
 E. Depagne
- From European Southern Observatory (Germany)
 F. Primas

Lithium in metal-poor stars

Oxygen in metal-poor stars

Chemical Analysis * UVES/VLT spectrum shows a [Fe/H]~-3.6

González Hernández et al. (2007, A&A, in preparation)

Orbital elements

New UVES/VLT data + Norris, Beers & Ryan (2000, ApJ)

Stellar Parameters

Chieffi & Limongi isochrones (private communication)

Teff ~ 6500 K for the primary

Teff ~ 5900 K for the secondary

A(Li)~ 2.2 for the primary A(Li)~ 1.8 for the secondary

Abundance trends: Lithium

Abundance trends: Lithium

Oxygen: 1D abundances * Spectral synthesis of Oxygen for near-UV OH lines: 1D analysis

[O/Fe]~2 dex in both stars using 1D models

Model Atmospheres: 3D (CO⁵BOLD)

* 3D vs. 1D models

See poster of N. Behara for more implications of the use of 3D models on the Halpha profiles and Teff determinations

Oxygen: 3D corrections

Component	[O/Fe] _{1D}	D _{3D-<3D>}	D _{3D-1D}
Star A	2.06	-0.68	-1.46
Star B	1.82	-0.00	-0.94

Abundance trends: Oxygen 1D

Abundance trends: Oxygen 1D

Abundance trends: Oxygen 3D

Conclusions and Future work

* 1D Li abundances suggest an increased scatter at the lowest metallicities with no clear slope of A(Li) vs. [Fe/H]

* The abundance trend of Oxygen vs. [Fe/H] seems to show a quasi-linear increase towards lower metallicities

*However, this might be considered with caution until 3D corrections and NLTE effects are applied to O and Fe for different abundance indicators in metal-poor dwarfs, subgiants and giants