News on HE 0107-5240, and new surveys for metal-poor stars

Norbert Christlieb
Department of Astronomy and Space Physics
Uppsala University, Sweden

HE 0107-5240
$[\text { Fe I/H }]_{\text {NLTE }}=-5.3$

The most heavy-element deficient stars known

The Very Metal-Deficient Star HE 0107.5240

Christlieb et al. (2002), Nature 419, 904 Christlieb et al. (2004), ApJ 603, 708 Bessell et al. (2004), ApJ 612, L61 Christlieb et al. (2007), in preparation

HE 1327-2326
$[\mathrm{Fe} \mathrm{I} / \mathrm{H}]_{\text {NLTE }}=-5.4$
Frebel et al. (2005), Nature 434, 871 . Frebel et al. (2006), ApJ 638, L17 Aoki et al. (2006), ApJ 639, 897

DSS Image ($\mathrm{R}, \mathrm{G}, \mathrm{B}$)

Some basic facts

$T_{\text {eff }}$	5100 K
$\log g$	2.2 dex
$[\mathrm{Fe} \mathrm{I} / \mathrm{H}]_{\text {NLTE }}$	-5.3 dex
μ	$?$
B	15.86 mag
$E(B-V)$	0.013 mag
$(B-V)_{0}$	0.68 mag
$(V-K)_{0}$	1.90 mag

HE 1327-2326
6180 K
3.7 dex
-5.4 dex
0.0733 arcsec/yr
14.016 mag
0.060-0.096 mag
0.40 mag
1.32 mag

The UV spectra

- Analysis of the UV spectra was done in collaboration with Mike Bessell (Australian National University) and Kjell Eriksson (Uppsala).
- Results will be published in Christlieb, Bessell \& Eriksson (2008, to be submitted to ApJ):

${ }^{12} \mathrm{C} /{ }^{13} \mathrm{C}$

Nitrogen abundance from NH

Sc II 3630.74Å

Sc II 3613.83A

Sr II 4077

Previous result was [Sr/Fe(-5.3)] < -0.5 (Christlieb et al: 2004, ApJ 603, 708)

BaII 4554

Previous result was [Ba/Fe(-5.3)] < +0.8 (Christlieb et al. 2004, ApJ 603, 708)

Detection of Fe II 3227.74

Detection of Fe II 3227.74

Continuum is a bit low here, hence we adopt result of equivalent width-based analysis, i.e.,
$\log \varepsilon=1.7 \pm 0.2 \Leftrightarrow[\mathrm{Fe} \mathrm{II} / \mathrm{H}]=-5.7 \pm 0.2$

Fe II 3213.31Å detected?

FeII 3255

FeII 3277

3D oonections for HE 0107-5240

Collet et al. (2005, Proceedings of IAU Symposium 228).

Species	43D
CH	-1.09
NH	-1.05
OH	-0.71
Mg I .	-0.08
Sc II	-0.13
Fel	-0.23
Fe II	+0.06
Col	-0.26
Nil	-0.31

Selected abundances of HE 0107-5240

	1 D	3 D	σ
$[\mathrm{C} / \mathrm{Fe}]$	+3.9	+2.9	0.2
${ }^{12} \mathrm{C} / 13 \mathrm{C}$	60	60	10
$[\mathrm{~N} / \mathrm{Fe}]$	+2.7	+1.7	0.2
$[\mathrm{O} / \mathrm{Fe}]$	+2.6	+1.9	0.2
$[\mathrm{Mg} / \mathrm{Fe}]$	+0.6	+0.5	0.2
$[\mathrm{Sc} / \mathrm{Fe}]$	+0.2	+0.1	0.2
$[\mathrm{Fel} / \mathrm{H}]_{\mathrm{LTE}}$	-5.4	-5.6	0.1
$[\mathrm{FelI} / \mathrm{H}]$	-5.7	-5.7	0.2
$[\mathrm{Co} / \mathrm{Fe}]$	+0.7	+0.5	0.2
$[\mathrm{Ni} / \mathrm{Fe}]$	+0.1	-0.2	0.1

Remarks:

- Solar abundances are from Asplund, Grevesse \& Sauval (2005)
-3D corrections from Collet, Asplund \& Trampedach (2006, ApJ 644, L121)
- Adopted $[\mathrm{Fe} / \mathrm{H}]$ is -5.7 . This value has been used when computing [X / Fe].
- Note the good agreement between Fe I and Fe II abundances, which constraints the maximum possible NLTE effect of Fel (assuming log g derived from isochrone is correct).

Radial velocity monitoring

Future surveys for metal-poor stars

. www.lamost.ong

LAMOST optical design

- Clear Aperture: 4m
- 5° diameter field of view
- 4,000 fibers
- 16 fiber-fed two-arm spectrographs for low- to medium-resolution
- In low-res mode, $S / N=10$ for 20.5 mag object in 1.5 h
- First Light planned for mid-2007

Instrument configurations

Low-resolution mode

	Blue Arm			Red Arm
	R	Wave. range (nm)	R	Wave. range (nm)
Full slit	1000	$370-590$	1000	$570-900$
$1 / 2$ slit	2000	$370-590$	2000	$570-900$

Medium-resolution mode

	Blue Arm		Red Arm	
	R	Wave. range (nm)	R	Wave. range (nm)
Full slit	5000	$510-550$	5000	$830-890$
$1 / 2$ slit	10000	$510-550$	10000	$830-890$

The LAMOST survey for metal-poor stars

EMP and HMP stars expected to be found

Survey	Effective sky coverage	Effective mag limit	$N<-3.0$	$N<-5.0$
HES	$6400 \mathrm{deg}^{2}$	$B<16.5$	200	2
SEGUE	$1000 \mathrm{deg}^{2}$	$B<19$	1000	10
LAMOST	10,000 deg 2	$B<19$	10,000	100
SSS	20,000 deg 2	$B<18$	5000	50

- Number of stars to be found in SEGUE will mainly be limited by number of fibers allocated for follow-up. Only about 10% of all candidates down to $B=19$ can be observed.
- SSS follow-up will be done with SSO 2:3m + WiFeS, hence follow-up will not be obtained for the faintest stars. See talk of Stefan Keller for details on SSS.
- The above estimates are at best accurate to within a factor of 2 .

Summary/ conclusions

- A new, more robust estimate of the iron abundance of HE 0107-5240, based on Fe II lines, yields $[\mathrm{Fe} / \mathrm{H}]_{3 \mathrm{D}}=-5.7$.
- The absence of neutron-capture elements is confirmed by tighter upper limits derived from the UV spectrum of HE 0107-5240.
- Weak odd-even effect is seen, as in other extremely metal-poor stars (see e.g. Cayrel et al. First Stars sample).
- Up to now, there are no indications for a radial velocity variation of HE 0107-5240. Further monitoring over a much longer period of time is needed (VLT/UVES proposal for P80 submitted).
- Upcoming deeper surveys for metal-poor stars:
- LAMOST
- Southern Sky Survey (SSS)
- It is expected that in these surveys significant numbers of new stars with $[\mathrm{Fe} / \mathrm{H}]<-5.0$ will be found in the next few years.

