

The large scale HI distribution in the Milky Way disk and halo

P.M.W. Kalberla¹, L. Dedes¹, T. Westmeier, J. Kerp¹, U. Haud²

¹Argelander Institut für Astronomie ²Tartu Observatory

Rationale behind this talk:

- What means halo?
 - Outside the plane?
 - What defines the Galactic disk?
- Extra-planar = anomalous?
 - Normal gas belongs to the disk
 - rotates similar to the stars
 - is bound to the disk
 - has limited velocities

We first need a definition of

- the Galactic disk
- the "normal" gas
 - scale height
 - velocity dispersion
 - "phase space"

Use HI data from the LAB survey.....

- Derived density distribution depends on the **rotation curve**
 - depends on mass distribution
 - allows to check Milky Way mass models
- Model the mass distribution in a self-consistent way
 HI flaring is most sensitive to the mass distribution
- Iterative solution of the Poisson and Boltzmann Eqs.
 - Bar, bulge, thin, thick stellar disk, gaseous disk, halo
 - Use all known observational constraints
 - check n(R,z,az) for R < 40 kpc, z < 15 kpc

HI volume density at az = 110°

az: 1.100000e+02

The mass model - conventional

• spheroidal halo

dark matter spheroid without ring

The mass model – best fit

spherical halo, dark matter disk and ring dark matter disk with ring - final model north 3 average south DMD 2.5 DMD + ring flaring HWHM (kpc) 2 1.5 1 0.5 0 15 25 30 35 5 10 20 40 0 R (kpc)

Milky Way dark matter – best fit model

- An isothermal dark matter halo is needed to explain the mass distribution on large scales up to 350 kpc
 - Core radius 35 kpc, mass 1.8 10^{12} M_{sun}
- Within the Milky Way disk (<50 kpc) there is dark matter within a thick exponential disk
 - Mass: 1.8 10^{11} M_{sun}, twice the mass of all visible matter
 - radial exp. scale length 7.5 kpc, twice the scale length of the gas
 - scale height 10 times gaseous, velocity dispersion σ =105 kms⁻¹
- There is a significant mass concentration in a **ring**
 - Mass: 2 10^{10} $\rm M_{sun}$
 - R = 13 18.5 kpc, extension 5 kpc in R, 1.7 kpc in z

Mass model – properties (Kalberla et al., 2007)

- dark matter ring mass consistent with
 - EGRET excess γ -ray emission (de Boer et al., 2005)
- dark matter ring position coincident in with
 - stellar streams, but the stellar mass is only 2 10⁸ 10⁹ Msun (e.g. Ibata et al., 2003)
 - disk mass ratio (2/3 dark) consistent with
 - collisional debris from dwarf Galaxies (NGC5291) (Bournaud et al. 2007)
- HI distribution and spiral arm features consistent with
 - Levine et al. (2006)

Consequences for the HI distribution

Observed...

LAB survey corrected for stray radiation

GASS (Parkes) preliminary results

: +62.86 km/s

Galactic Longitude

v = 102.5 km/s

v = 162.5 km/s

v = 232.5 km/s

v = -62.5 km/s

v = -102.5 km/s

v = -142.5

v = -192.5 km/s

Halo NH column densities, centered at I=180^o

Clip data for T > 50 mK

Clip data for T > 100 mK

Location of MW "great disk" satellites

Results and conclusions

- Spheroidal or NFW halos are inconsistent with HI flaring
- The Milky Way contains dark matter in a thick disk, twice the mass of the visible baryons (Kalberla et al., 2007)
- The disk contains a dark matter ring at 15 < R < 18 kpc, associated with a stellar ring. The most probable explanation is recent accretion of a dwarf galaxy
- There is evidence for baryons associated with the thick dark matter disk: hot, 10⁶ K, and cold, containing HI filaments

Results and conclusions

- The most distant halo HI gas is the most clumpy
- HI gas closer to the disk is more diffuse
- Extra-planar gas is filamentary (except IVA and outer arm)
- Filaments are oriented preferentially along great circles possibly correlated with "great disk" of MW satellites
- Extra-planar HI gas shows a two-component structure
- The specific turbulent energy density exceeds that of the disk gas by an order of magnitude

universität

Gravity and gas pressure are in equilibrium

Component	n_{fit}	n_{obs}	σ_{fit}	σ_{obs}
	cm^{-3}	cm^{-3}	$\mathrm{km} \mathrm{s}^{-1}$	${\rm km}~{\rm s}^{-1}$
hot halo phase	.0018	.0013	60.0	60.0
neutral halo phase	.0014	.0012	74.0	60.0
DIG	.034	.024	26.8	26.8
WNM	0.19	0.10	14.8	14.8
CNM	0.50	0.30	6.1	6.1

universität**bonn**

z (kpc)

26

References

- Kalberla, P.M.W., et al., 2007, A&A 469, 511
- Bournaud, F., et al., 2007, Science 316, 1166
- de Boer, W., et al., 2005, A&A, 444, 51
- Dehnen, W., & Binney, J., 1998, MNRAS, 294, 429
- Ibata, R., et al., 2003, MNRAS, 340, L21
- Kroupa, P., Theis, C., Boily, C.M., 2005, A&A, 431, 517
- Kuijken, K., & Gilmore, G., 1989, MNRAS, 239, 605
- Levine, E.S., Blitz, L., Heiles, C., 2006, Science, 312, 182

