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WHAM Northern Sky Survey

@ Deepest, kinematically resolved map of the Warm Ionized
Medium (WIM)..

37,565 pointings covering the Northern sky down to 8 = -30°.

Each one-degree pointing captures an Hx spectrum over a
200 km s! region centered near v,z = O km s

Sensitivities reach below 0.1 R (EM ~ 0.2 cm=® pc) in all
spectra, with extended spatial regions detected below 0.03 R.
Available at http://www.astro.wisc.edu/wham/.
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Ionization in the WIM

General Obseryvations
3 [0 I] A6300; H*/Hiot > 90%.°
® He I \5876: Het/He < 60%.°

@ [N II] and [S II] are bright compared to H II
regions, ratio to Hx typically 0.1 to 1.0.

@ [O III] is faint, ratio to Hx typically << 0.1.°
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Ionization in the WIM

General Conclusions

@ Power requirement is high’: Hx observations imply a
disk surface recombination rate of ~ 4 x 10° s cm.

@ 15% OB Lyman continuum flux.
@ 100% kinematic input from SN.
@ N*, S*, and O*, efc. are dominant ions.

@ Ionizing spectrum is soft?
@ Photon/gas ratio is low?
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Temperature in the WIM

General Observations

@ [S II]/Hx and [N II]/Hx are strongly correlated with
each other, especially within a localized region.”

@ [N II]/Hx and [S II]/Ho increase with
decreasing Inq.”

@ [N II] A5755/[N II] A6584 is about three times
larger in the WIM than in H II regions.®’

@ [0 II]/H« increases faster than [N II]/Ho with
decreasing IHO(- [See poster by Reynolds et al.]
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Temperature in the WIM

General Conclusions

@ Te is elevated in the WIM compared to classical H II
regions: 8,000-12,000 K.

@ Variation in optical forbidden line radiation is
dominated by changes in Te rather than changes in
ionic fractions or elemental abundances.”

@ Te rises with decreasing EM and, as a result, with
increasing |z|.
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Scale Height

@ Two independent observational methods:

@ Examining the DM distribution of high-latitude
pulsars with known distances.’

@ Kinematically separating and tracing EM vs. |z] in
Perseus Arm.*

@ Both studies give Hwim = 1 Kpc.
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EM Distribution

@ Smooth, plane-parallel ionized layer would result in
EM sin |b| = constant.

& What does the real distribution of EM sin |b| tell us
about the WIM?

@ Hill, et al., in prep.
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EM Distribution

Lognormal

@ Variable effects that are multiplicative rather than

additive.
@ PDF « f(log x; Y, 0) / x , where f() is a normal
distribution.
68.37% 95.5%
Normal UtO U+ 20
Lognormalglie |1~ &/ ae ol SIS S il o &
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EM Distribution

@ The EM sin |b| distribution of the WIM can be
described by a lognormal function having:

<log EM sin |b]> = 0.15 (<EM sin |bl> = 1.4)
FWHM = 0.41 (0* = 1.5)

@ Typical result of compressions and rarefactions in
fluids.

@ FWHM describes the "strength” of those processes.
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Isothermal Turbulence

Kowal, Lazarian, & Beresnyak 2007 (KLB)®
@ 3D compressible, isothermal MHD turbulence.

@ Range of resolutions (256° used here), sonic and
Alfvenic Mach numbers (Ms, Ma).

@ Analyze a range of 3D and 2D (column density)
statistics after many dynamical time steps.
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Simulations of the WIM

@ KLB models with physical scaling:

@ Impose <DM> = 23 pc cm=°, the mean value from
globular cluster pulsars.

@ Investigate a range of box sizes (h) from 200-
1000 pc.

@ T = 8000 K

@ Compute simulated 2D EM maps and compare this
EM distribution to that of the WIM.
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Simulations of the WIM

@ EM distribution shape is very sensitive to Ms but
relatively insensitive to Ma.

@ Simulated EM distribution best fits the WIM EM
distribution when using:

@ [FWHM] Mildly supersonic conditions: 1 < Ms < 3.

@ [Mean] Box size (h) of 500-600 pc.
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Simulations of the WIM

@ With no other parameter adjustment or scaling,
best-fit models also:

@ Match pulsar DM sin |b| distribution.

@ Have velocity line profiles consistent with those
from the WIM.
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Summary

@ WHAM observations of the WIM reveal a low-
ionization (H*, O*, N*, S*, ...), warm (0.8 - 1 x 10*
K), low-density (< 0.1 cm™3) plasma distributed in a
thick disk (H =1 kpc).

@ New studies of the EM distribution suggest that
the WIM is described well by mildly-supersonic
(Ms = 1-2) isothermal, MHD turbulence models.
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