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Introduction

Gaia is an all sky astrometric and spectro-photometric survey com-
plete to magnitude G=20 (V=20-22). It will map about 109 stars,
a million quasars as well as a few million galaxies. Detailed infor-
mation about Gaia can be found in (Bailer-Jones [2004]) or under
http://www.rssd.esa.int/Gaia/.
Gaia works without any input catalogue so that an automatic classi-
fication and AP estimation become indispensable. The red and blue
low resolution photometers provide the input spectra (RP/BP) in
addition to parallax for the classification and AP estimation. Both
algorithms are currently based on simulated data.
Here the parameter estimation for single stars is described in which
the four APs log(Teff), log(g), [Fe/H] and Av are estimated for mag-
nitude 15 and 17 and including noise.
Figure 1 shows the variation of the spectra related to variations in a)
log(Teff) and b) [Fe/H]. The photometric spectra are mostly sensitive
to changes in log(Teff) (and Av), whereby variations in [Fe/H] (and
log(g)) do not strongly affect the photometric spectra at all which
makes the parameter estimation for these so called weak parameters
([Fe/H] and log(g)) much more difficult.

Figure 1: Sensitivity of photometric spectra regarding
variation in a) log(Teff) and b) [Fe/H]

Parameter Estimation

The parameter estimation is based on 96 bins describing the combined
RP/BP photometric spectra and an extra one holding the parallax.
8000 samples are taken from the simulation data at random, consist-
ing of RP/BP spectra, parallax and of a-priori known APs which are
used for the training of the model. Each value j of each bin i of the
RP/BP spectra and the parallax is normalized by the mean µi and
the standard deviation σi.

xni,j = (xi,j − µi)/σi (1)

The quality of the classifier performances is given by the root mean
square error (RMSE) per AP:

RMSE =

√

∑n
j=0(APest(j) − APtrue(j))

2

n
(2)

with n=number of samples (here 8000).
As a benchmark the APs are estimated using k-nearest neighbor with
k=1.
In comparison to the local k-nearest neighbor approach, a global fit
is computed by training a support vector machine and applying its
resulting model to the new data for which the APs are not known
a-priori.

K-Nearest Neighbor

K-nearest neighbor searches for the nearest sample in the training
data by computing the Euclidean distances between the new sample
and the training set samples. It applies all APs of the nearest train-
ing set sample to the new data sample. Figure 2 shows the residuals
computed for the 4 APs log(Teff), log(g), [Fe/H] and Av plotted ver-
sus their true values. The residuals of log(Teff) show the degeneracy
between log(Teff) and Av. Furthermore it becomes obvious that k-
nearest neighbor is not suitable for the estimation of the so called
weak parameters log(g) and [Fe/H].
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Figure 2: Residuals, magnitude 15 of log(Teff), log(g), [Fe/H],
Av using k-nearest neighbor.

Support Vector Machines

Support vector machines (svm) after Vapnik [1995] are used. Gener-
ally, svms seperate classes by finding an optimal hyperplane with a
maximal margin between the different classes. If the input data can-
not be seperated in a linear way, the data are mapped into a higher
dimensional feature space in which the linear seperation is used. Svms
with the inclusion of an RBF kernel are used to treat the nonlinearity
of the data. The parameters C (penalty term) and γ (kernel specific)
are configured by a grid search.
The residuals of the 4 APs are plotted versus the true values in Figure
3 for magnitude 15 and in Figure 4 for magnitude 17.
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Figure 3: Residuals, magnitude 15 of log(Teff), log(g), [Fe/H],
Av using svm.
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Figure 4: Residuals, magnitude 17 of log(Teff), log(g), [Fe/H],
Av using svm.

It can be seen that especially the weak parameters log(g) and [Fe/H]
show a trend in the residuals.

Results

The weak parameters [Fe/H] and log(g) can be estimated more pre-
cisely by using svm whereby the results for the strong parameters
log(Teff) and Av remain similar, see Table 1. Analysing the sensi-
tivity of the training data (RP/BP photometric spectra + parallax)
regarding changes in the APs, Figure 1 shows that nearly all varia-
tion of the photometric spectra is caused by variation in the strong
parameters. By using k-nearest neighbor as classifier, the Euclidian
distance between the new sample and the training samples is esti-
mated whereby this distance is dominated by effects in the strong
APs so that the weak APs cannot be estimated precisely with k-
nearest neighbor. When using svm, the model for each AP is trained
separately so that the whole variation in the photometric spectra is
expressed by the variation of each single AP. The residuals given in
Figure 3 and Figure 4 (and Figure 2) include linear trends which
shows that the model does not correctly fit the data. This trend (lin-
ear trend of form y = Ax + b) is estimated by a least squares fit and
is subtracted from the residuals. The improvement is shown in the
RMSE in Table 1 and can be seen especially for the weak parameters
log(g) and [Fe/H] and for larger magnitude (17).

Parameter Svm Svm + lsq knn=1
a) magnitude 15

log(Teff) 0.1059 0.0978 0.1110
log(g) 0.5496 0.4709 0.8910
[Fe/H] 1.5303 0.8023 1.9422

Av 0.5667 0.5348 0.5465
b) magnitude 17

log(Teff) 0.1661 0.1452 0.2214
log(g) 0.7708 0.6469 1.2968
[Fe/H] 1.6766 0.9497 2.2035

Av 0.7433 0.6987 0.9721

Table 1: AP estimation accuracy measured in RMSE. The
first column shows the result computed by using svm, the

second column shows the results using svm and correcting the
residuals by a least squares fit, the third column shows the
results using k-nearest neighbor with k=1 as classifier for a)

magnitude 15 and b) magnitude 17.

For analysing the degeneracy of log(Teff) and Av shown in Figure 2 in
more detail the residuals of log(Teff) are plotted versus the residuals
of Av in Figure 5 with the color-coding regarding the true log(Teff)
(black-red: log(Teff)=3.3...4.6) using a) k-nearest neighbor and b)
svm as classifier. The large degeneracy between log(Teff) and Av is
shown in the k-nearest neighbor result. Hot stars are estimated too
cold with a too small extinction, cool stars are estimated too hot with
a too large extinction. This degeneracy is much smaller in the svm
results.
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Figure 5: Residuals of log(Teff) versus residuals of Av,
magnitude 15, using a) k-nearest neighbor and b) svm
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