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Introduction

Gaia is the next generation astrometric mission from ESA, due to launch in
2011. It will survey the entire sky down to a magnitude of approximately
V=20, detecting about one billion stars, or about 1% of the Galactic stellar
population. Positions, proper motions and parallaxes will be determined
with unprecedented accuracy, and radial velocities will also be determined
for the brightest objects, making a genuine three dimensional survey of the
local environment. The mission will also obtain astrophysical information on
the properties of the stellar sample, providing an insight into the formation
and subsequent dynamical and chemical evolution of the Milky Way.
Together with the stellar sample, several million galaxies, perhaps half a mil-
lion quasars and many solar system objects will also be detected. No input
catalogue will be used, so automated classification of detected sources is a
key part of the data processing process. Here, we describe progress on the
discrete source classifier (DSC) which is being developed at MPIA.

The Gaia mission

The astrometric accuracy will be 12-25µas at V=15 and 100-300µas at V=20
(see Figure 1 for historical context). The main astrometric instrument will
be complemented by two other onboard instruments. The radial velocity
spectrometer (RVS) will measure radial velocities with a precision of 10-15
km s−1 or better for the brightest 150-200 million stars. A low dispersion
integral field spectrophotometer covers the wavelength range 330–1000nm.
This instrument in fact provides two overlapping spectra, one at the blue
end and one at the red. These are referred to as BP and RP spectra. Each
is expected to comprise about 48 bins.

Figure 1: Astrometric performance of Gaia compared to previous
measurements

Discrete source classifier

The discrete source classifier (DSC) takes as its main inputs the BP and RP
spectra, together with the parallax and proper motion measurements. The
position is not used for classification.
Algorithm development is currently being carried out with simulated data.
The underlying spectra are drawn from libraries (the stellar data is drawn
from the Basel libraries) and passed through the instrumental response func-
tion to produce the observed spectrum. Noise is then added appropriate to
the required magnitude. At present, all classification takes place at an as-
sumed Gaia magnitude of G=15 (corresponding approximately to V=17).
Parallaxes and proper motions are assigned for the stars based on a model
of a homogeneous spherical distribution, whilst for extragalactic objects the
parallax and proper motion is generated purely from the anticipated astro-
metric error function.
At the current stage of development, four classes of astrophysical object are
considered: single stars, physical binaries, point-like galaxies and quasars.
Other classes, such as asteroids and non-physical binaries (i.e. chance pairs)
have been temporarily excluded because the astrometric quantities are not
easily defined for them. To test the classification algorithms, samples of
sources are selected from the simulated data grids. Two data samples are
used, each containing two thousand sources of each astrophysical class, mak-
ing eight thousand sources in total. One data set is used as a training or
reference set, and the other test set is then classified. Since the astrophysical
classes of the test set are in fact known, the statistical performance of the
classifier can be assessed.
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Figure 2: BP and RP spectra for several astrophysical classes. From
top: single stars, white dwarfs, physical binaries, non-physical binaries

(i.e. chance superpositions), quasars, galaxies, and asteroids

Algorithms

Several algorithms have come under consideration so far. Some of these are
discussed briefly below.

k Nearest Neighbour

With k=1, the Nearest Neighbour method classifies a source to be the same
class as the nearest object in the training set. ’Nearest’ is naturally inter-
preted to mean a Euclidean distance in data space if we consider only the
96 bins of the BPRP spectrum, and this method is the one that generated
the results presented here. A more sophisticated (and easy to implement)
method would be to weight the input data according to the relative mea-
surement errors. When other measurements, such as parallax, are to be
introduced, the choice of error function requires more thought. For k > 1,
the output consists of a probability estimate for each class based on the k

nearest points in the training grid.
The main advantage of nearest neighbour techniques is that they are rela-
tively easy to implement. Their drawbacks are that they tend to be compu-
tationally expensive and it is difficult to achieve a representative density of
training sources in the 96 dimensional data space.
Table 1 shows the confusion matrix for the nearest neighbour method with
k = 1 and excluding parallax and proper motion. Rows correspond to the
true class of the test objects, and columns show the classification results as
a percentage of the total input sources of that class. The leading diago-
nal indicates sources that are correctly classified, off diagonal elements show
misclassification rates. The rows each add to 100% of input sources.

Stars Binaries Quasars Galaxies
76.10 23.40 0.40 0.10 Stars
18.28 81.62 0.10 0.00 Binaries
2.65 0.60 94.34 2.40 Quasars
0.00 0.00 0.05 99.95 Galaxies
Accuracy: 88.0%

Table 1: Confusion matrix for kNN method, k=1 and parallax and
proper motion are not included.

Support Vector Machine (SVM)

Support vector machines classify the data by projecting the input space
onto a higher dimensional space and then finding optimal linear discrimi-
nants between the classes in this higher dimensional space. The solution for
the discriminant can be found without prohibitive computational effort by
introducing a kernel. We used an implementation called libSVM available
online at http://www.csie.ntu.edu.tw/∼cjlin/libsvm/. A coherent
explanation of the workings of SVM’s can be found in Bennett & Campbell
(2000). The basic reference is Vapnik (1995).
Unlike kNN, the SVM can deal relatively naturally with the introduction of
parallax and proper motion. Table 2 shows results for classification with an
SVM with the astrometric information included. Figure 3 shows cumula-
tive true positive classification rate against cumulative false negative for the
stars and the quasars, with the sources arranged in order of ’most secure’
classification (at the left hand side) to most doubtful.

Stars Binaries Quasars Galaxies
87.55 12.00 0.45 0.00 Stars
8.19 91.76 0.05 0.00 Binaries
0.35 0.00 97.75 1.90 Quasars
0.00 0.00 0.00 100.0 Galaxies
Accuracy: 94.24%

Table 2: Confusion matrix for SVM method including astrometric
information.

Figure 3: (Top) The rate (in percent) of cumulative correct
classifications for the input stars (y-axis) versus the rate of false
negative classifications, i.e. stars classified as some other class.

(Bottom) The same plot for the Quasars.

Neural Network

The results of a neural network method are shown in Table 3. The neural
network was implemented within the R statistics package.

Stars Binaries Quasars Galaxies
90.35 9.65 0.05 0.00 Stars
7.54 92.36 0.10 0.00 Binaries
0.00 0.00 100.0 0.00 Quasars
0.00 0.00 0.15 99.85 Galaxies

Accuracy: 95.65%

Table 3: Confusion matrix for Neural Network method including
astrometric information.

Discussion

For all the methods discussed above, the greatest confusion occurs between
the single stars and binaries, which is perhaps to be expected.
The quasars class is of particular importance for the astrometric solution,
since they form a population of zero parallax objects that could be used as
a natural reference frame. It is therefore desirable to obtain clean samples
of quasars, uncontaminated by galactic objects.
So far much of the DSC effort has focused on support vector machines, since
this method is robust and produces good results. The nearest neighbour
method has difficulties either with accuracy or with computational efficiency
in the multidimensional data space. The early results from the neural net-
work are promising and may be developed further. In practice, the best
approach may be to apply different methods in different regimes.
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