Stellar Structure and Evolution - Lab

Lecturer: Abel Schootemeijer aschoot@astro.uni-bonn.de https://astro.uni-bonn.de/~aschoot/

Teaching assistant: Harim Jin hjin@astro.uni-bonn.de

UNIVERSITÄT BONN

CS

Info & Lab instructions

Logistics

- Running MESA (detailed instructions in lab lecture notes)
- Troubleshooting sessions
- Report

1-D stellar evolution codes

- MESA in theory
- MESA in practice

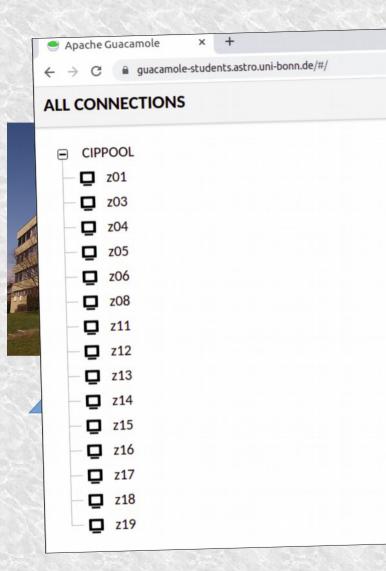
Running MESA (Modules for Experiments in Stellar Astrophysics)

 Copy the following lines (the correct path to the MESA folder etc.) into your ~/.bashrc file (which can be opened with e.g. gedit ~/.bashrc): export MESA_DIR=/vol/software/tools/MESA/MESA
 export OMP_NUM_THREADS=3 export MESASDK_ROOT=/vol/software/tools/MESA/MESA/MESA/MESAsdk
 source \$MESASDK_ROOT/bin/mesasdk_init.sh

MESA installed on /vol/software/<...>

Modules accessible via CIP-pool machines

Running MESA (Modules for Experiments in Stellar Astrophysics)

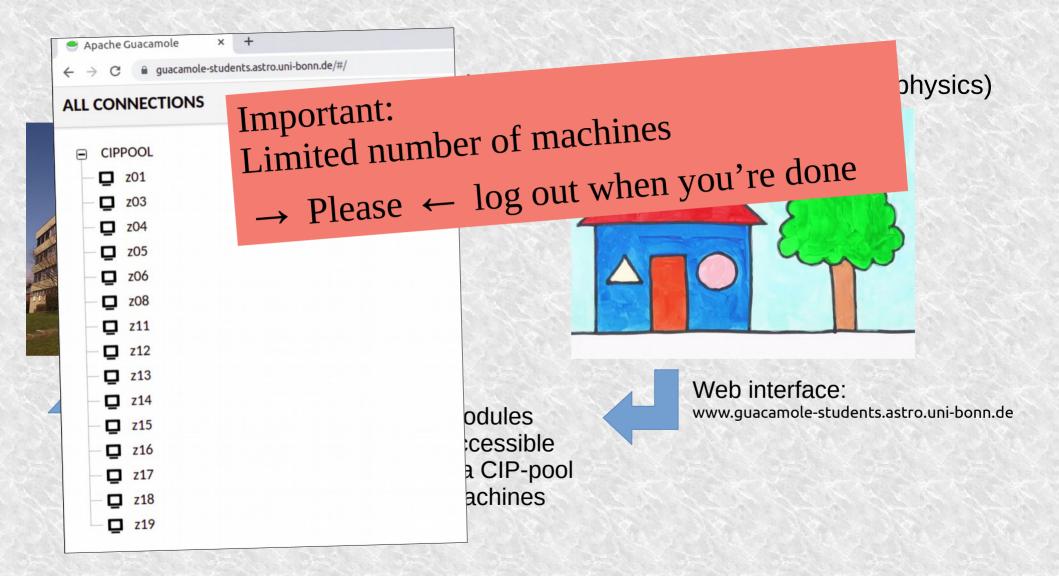


Modules accessible via CIP-pool machines

Web interface: www.guacamole-students.astro.uni-bonn.de

Enter the CIP-pool room

dules for Experiments in Stellar Astrophysics)



cessible a CIP-pool

odules

achines

Web interface: www.guacamole-students.astro.uni-bonn.de

×

→ C 🔒 guacamole-students.astro.uni-bonn.de/#/

+

ALL CONNECTIONS

CIPPOOL

🗖 z15

🗖 z16

z17

z18

Z z19

Own laptop?
Sure, but keep in mind:
MESA needs linux or mac
We cannot help with installation issues
The lab is designed for MESA v10000

odules

cessible

achines

a CIP-pool

www.guacamole-students.astro.uni-bonn.de

dules for Experiments in Stellar Astrophysics)

Classes

- Friday 8:45 to 9:45
- 1 introduction lecture in R0.012
- 4 sessions on the 4 exercises in R0.007 (CIP-pool)
- These are non-obligatory **troubleshooting sessions** (i.e., you work on the exercises *before*)
 - 10.11.2023: introduction lecture
 - 17.11.2023: exercise 1 troubleshooting session
 - 24.11.2023: exercise 2 troubleshooting session
 - 01.12.2023: exercise 3 troubleshooting session
 - 08.12.2023: exercise 4 troubleshooting session

Classes

- Friday 8:45 to 9:45
- 1 introduction le Questions:
 - who has no laptop/desktop with internet?
- 4 sessions on t who is going to the math tutorial at 10am?
- These are non-obligatory troubleshooting sessions (i.e., you work on the exercises before) Scheduling extra official sessions is
 - 10.11.2023: introduction lecture
 - not possible, but a meeting in the 17.11.2023: exercise 1 troubleshoot CIP-pool room at another time on
 - 24.11.2023: exercise 2 troubleshooti -
 - 01.12.2023: exercise 3 troubleshooti
 - Friday could be arranged 08.12.2023: exercise 4 troubleshooting session -

Classes

- Friday of the Please don't use remote access
 1 when CIP-pool room is in use:
- 4 Wednesday 16:00-18:00 • Th Friday morning

20.007 (CIP-pool)

shooting sessions

- (i.e., you work on the exercises before) Scheduling extra official sessions is
- 10.11.2023: introduction lecture
- not possible, but a meeting in the 17.11.2023: exercise 1 troubleshoot
- 24.11.2023: exercise 2 troubleshooti -
- CIP-pool room at another time on 01.12.2023: exercise 3 troubleshooti
- Friday could be arranged - 08.12.2023: exercise 4 troubleshooting session

- Answer Q1.1 etc. point for point
- Be to the point
- Consult SSE lecture notes
- Plotting:
 - basic python script in lab lecture notes
 - other software also ok
 - feel free to ask for help

Exercise 1 — Model resolution and time scales

- Compute the evolution of a $1 M_{\odot}$ star from the pre-main-sequence (pre-MS) until it has exchausted hydrogen in its core. To get started with the simulation, see 'How to start a run'.
- Enter the value of $1\,M_{\odot}$ in <code>inlist_project</code>.
- There, also set stop_near_zams to .false. and xa_central_lower_limit to 1d-2
- Start your simulation with ./rn
- **Q1.1:** What type of information is included in the history file in the LOGS folder? Make a plot that shows whether or not the time steps are constant and briefly discuss the reason.
- Q:1.2 What type of information is included in the profile files in the LOGS folder? Make a plot that shows whether the grid points are spaced evenly or not and briefly discuss the reason.

3 options to access data:

Accessing data on CIP-pool machines

The data from your MESA run will be stored on CIP-pool machines. Then, there are a few ways to work with your data:

- Click on the internet icon when using a CIP-pool machine and upload the history.data and profile<nr>.data to your Google Drive, Dropbox, or a similar service.
- When physically present in the CIP-pool room, use a USB-stick.
- Access and work with the data whilst logged in at a computer in the CIP-pool.

	Α	В	С	D	E
1	Name	mass_in_Msun	q_bottom_tams	q_top_tams	
2	Abel	34.659	0	0.33	
3					

↑ Google sheets

- Everyone simulates random masses
- Group effort: combine results

THE WISDOM OF CROWDS

Why the Many Are Smarter Than the Few

James Surowiecki

• You will not be judged by amount of JAMES St data points in the google sheets file that you use

(but please feel encouraged to follow the exercise schedule)

Download data from Google sheets via \rightarrow file \rightarrow download \rightarrow .csv

	А	В	С	D	E	
1	Name	mass_in_Msun	q_bottom_tams	q_top_tams		
2	Abel	34.659	0	0.33		
3					Enter decim	al points, not commas

- 10.11.2023: introduction lecture
- 17.11.2023: exercise 1 troubleshooting session
- 24.11.2023: exercise 2 troubleshooting session
- 01.12.2023: exercise 3 troubleshooting session
- 08.12.2023: exercise 4 troubleshooting session

→ Deadline: Sunday 07.01.2024

• Mail your report to **BOTH** aschoot@astro.uni-bonn.de and hjin@astro.uni-bonn.de (write 'SSE lab report' in email title)

/'pleidʒəriz(ə)m/

Please don't plagiarize:

we have to take this very seriouslywe are able to find out

noun

↓ Source: Oxford languages

the practice of taking someone else's work or ideas and passing them off as one's own.

/'pleId3ərIZ(ə)m/

Please don't plagiarize:

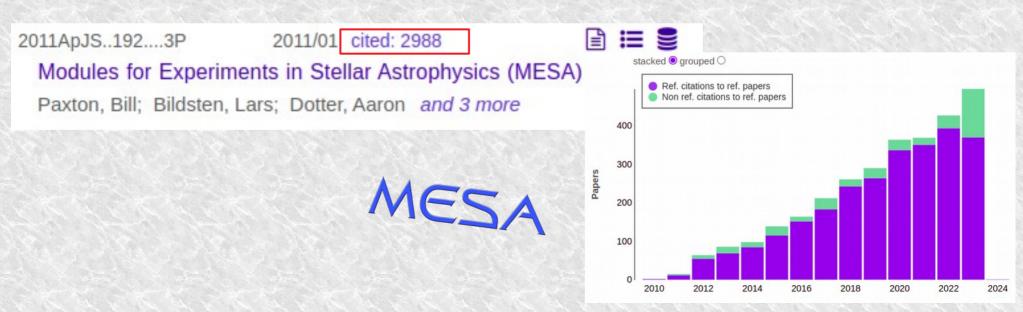
we have to take this very seriouslywe are able to find out

noun

↓ Source: Oxford languages

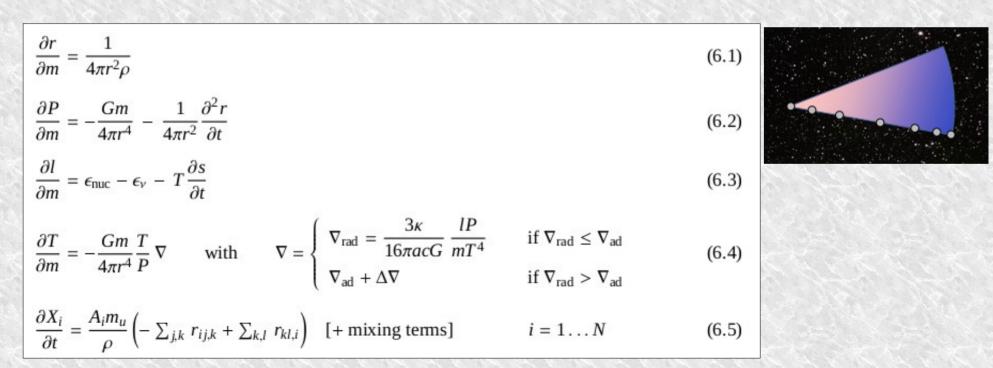
the practice of taking someone else's work or ideas and passing them off as one's own.

Ergo, it is not allowed to:

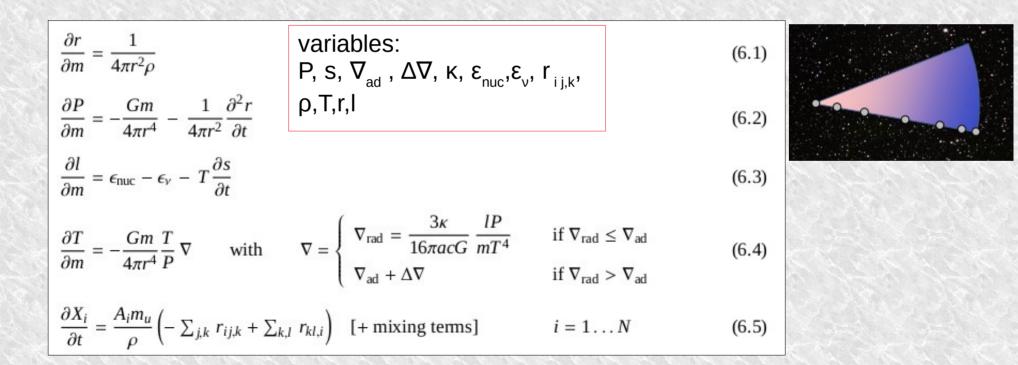

- use someone else's simulation
- copy text
- include a figure you didn't make

But it is allowed to:discuss exercises togetherwork on problems together

Main takeaways from 'logistics'


- Next 4 Friday 08:45-09:45 sessions are troubleshooting sessions in R0.007 (CIP-pool room)
- Lab report deadline 07.01.2024
- Most of this info is discussed in lab lecture notes
- Log out when not using remote access AND when CIP-pool room is used: Wednesday 16:00-18:00 Friday morning

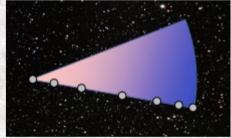
 Very frequently used in astrophysical research to test our understanding of stellar physics (see https://ui.adsabs.harvard.edu/ 1)



- Assuming spherical symmetry saves a lot of computation time (compared to 3-D)
- Stars are modeled in Lagrangian coordinates, i.e., in the co-moving frame

MESA solves differential equations (Lecture notes, Chapter 6) throughout the star, at one point in time \rightarrow stellar model

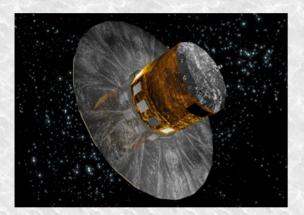
4+N equations, ~11+N variables

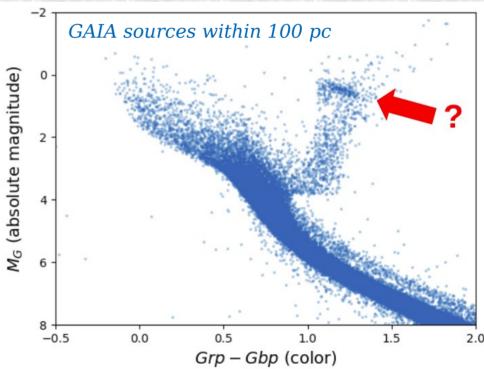

4+N equations, ~11+N variables

\rightarrow We need to get closed system of eqs

$\frac{\partial r}{\partial m} = \frac{1}{4\pi r^2 \rho}$	Fortunately: P, s, ∇_{ad} , Δ ∇ , κ, ε _{nuc} ,ε _ν ,	r	(6.1)	
$\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4} - \frac{1}{4\pi r^2} \frac{\partial^2 r}{\partial t}$	Can be obtained with p	3 .	(6.2)	••••••
$\frac{\partial l}{\partial m} = \epsilon_{\rm nuc} - \epsilon_{\nu} - T \frac{\partial s}{\partial t}$			(6.3)	
$\frac{\partial T}{\partial m} = -\frac{Gm}{4\pi r^4} \frac{T}{P} \nabla \qquad \text{with}$	$\nabla = \begin{cases} \nabla_{\rm rad} = \frac{3\kappa}{16\pi a c G} \frac{l P}{m T^4} \\ \nabla_{\rm ad} + \Delta \nabla \end{cases}$	$\label{eq:rad_rad_states} \begin{split} & \text{if } \nabla_{\text{rad}} \leq \nabla_{\text{ad}} \\ & \text{if } \nabla_{\text{rad}} > \nabla_{\text{ad}} \end{split}$	(6.4)	
$\frac{\partial X_i}{\partial t} = \frac{A_i m_u}{\rho} \left(-\sum_{j,k} r_{ij,k} + \sum_{k,j} r_{ij,k} \right)$	$_{l} r_{kl,i}$ [+ mixing terms]	$i = 1 \dots N$	(6.5)	

- 4+N equations, ~11+N variables
- \rightarrow We need to get closed system of eqs


Fortunately: P, s, ∇_{ad} , $\Delta \nabla$, κ , ϵ_{nuc} , ϵ_{ν} , $r_{ij,k}$ Can be obtained with ρ , T, r, I


This is the task of some of the MESA Fortran modules (eos, kap, rates, ...)

... Then MESA can start to solve iteratively

Cool story, but does that work in practice?

Data from GAIA observations → Downloaded from https://gea.esac.esa.int/archive/

MESA installed on /vol/software/<...>

(Or MESA installed on laptop/desktop)

MESA in practice

With MESA directory set...

 Copy the following lines (the correct path to the MESA folder etc.) into your ~/.bashrc file (which can be opened with e.g. gedit ~/.bashrc): export MESA_DIR=/vol/software/tools/MESA/MESA
 export OMP_NUM_THREADS=3
 export MESASDK_ROOT=/vol/software/tools/MESA/MESA/MESA/mesasdk
 source \$MESASDK_ROOT/bin/mesasdk_init.sh

... you can copy the MESA work folder anywhere and start working

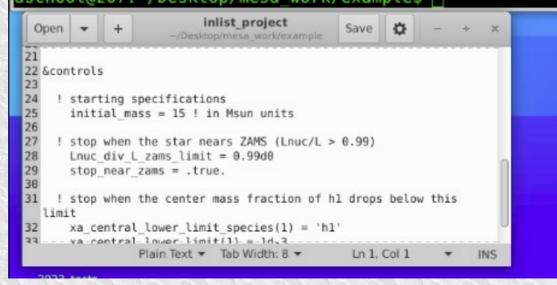
Terminal -							
File Edit	View Terminal Tabs H	elp					
aschoot	@z07:~/Desktop/m @z07:~/Desktop/m @z07:~/Desktop/m	esa_work\$ cd e	example [DIR/sta	ar/work	example	
	<pre>inlist_pgstar inlist_project</pre>		re README_	first	rn src		

Copied work folder:

aschoot@z07:~/Desktop/mesa_work\$ cp -R \$MESA_DIR/star/work example aschoot@z07:~/Desktop/mesa_work\$ cd example aschoot@z07:~/Desktop/mesa_work/example\$ ls clean inlist_pgstar LOGS mk re rn inlist inlist_project make photos README_first src

- Mk, rn, re (& clean) are executables for running MESA
- LOGS: stores history.data & profile<nr>.data
- photos: saves models that can be restarted with ./re
- inlist_*: overwrites MESA default settings

https://docs.mesastar.org/en/latest/reference/controls.html


initial_mass	
initial mass in Msun units. can be any value you'd like when you are creating a pre-main sequence model.	

```
initial_mass = 1
```

Also stop conditions, physics assumptions (wind, convection criterion,), numerics, ...

• e.g. gedit

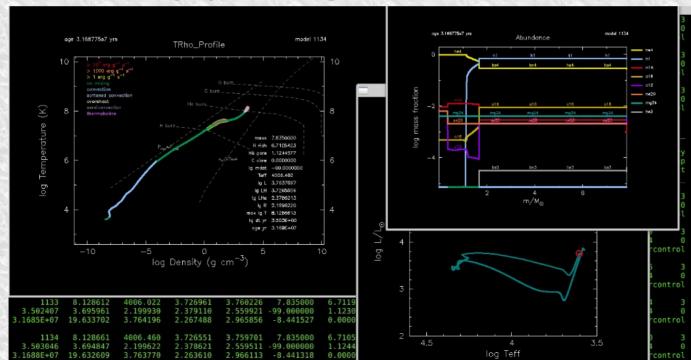
aschoot@z07:~/Desktop/mesa work\$ cp -R \$MESA DIR/star/work example Text editors: aschoot@z07:~/Desktop/mesa_work\$ cd example aschoot@z07:~/Desktop/mesa work/example\$ ls clean inlist pgstar LOGS mk re rn inlist inlist project make photos README first src aschoot@z07:~/Desktop/mesa work/example\$ gedit inlist project & [1] 1344935 aschoot@z07:~/Desktop/mesa work/example\$ aschoot@z07:~/Desktop/mesa work/example\$ aschoot@z07:~/Desktop/mesa work/example\$

Text editors:

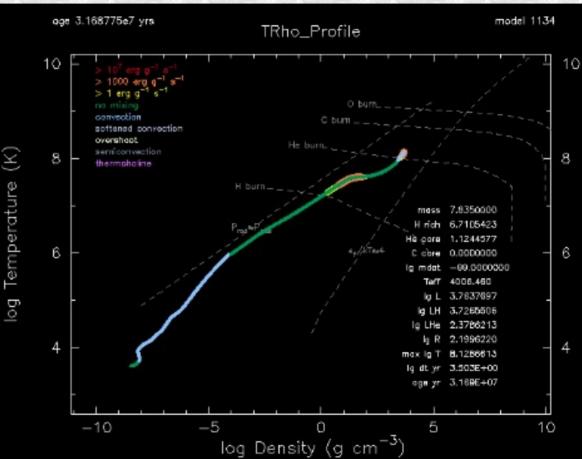
• e.g. gedit

Applications 🗄 🛃	history.data (~/Desk	top/ 🔲 [PGPLOT Server]	1- Terminal -			2	Fr 03	Nov. 14:25
Open - +				history.data			Save 🖸	5 - +
				p/mesa_work/example/LOGS				
2	1 version number	2 initial mass	3 initial z	4 burn minl	5 burn min2			
3	10000	1.50080080080080808E+901	2.000000000000000000000000000000000000	5.000000000000000000000000000000000000	1.000000000000000000000000000000000000			
5		1	2		3			
4		5	6		7			
8		9	10		11			
12		13	14		15			
16		17	18		19			
20		21	22		23			
24		25	26		27			
28		29	30		31			
32		33	34		35			
36		37	38		39			
40		41	42		43			
44		45	46		47			
48		49	50		51			
52		53	54		55			
56		57	58		59			
60		61	50		55			
1	mod	lel number	num zones	sta	r age			
log_dt	1100	star mass	log xmstar		log abs mdot			
mass conv core	0	conv mx1 top		mx1 bot	conv mx2 top			
conv mx2 bot	c	mx1 top		1 bot	mx2 top			
mx2 bot		log LH	log LHe		log LZ			
log Lnuc		pp	cog_the		tri alfa			
epsnuc M 1		epsnuc M 2	epsnuc		epsnuc M 4			
epsnuc_M_1 epsnuc_M_5		epsnuc_M_2 epsnuc_M_6	epsnuc_		epsnuc_M_4			
he_core_mass		c_core_mass	o_core		si_core_mass			
fe_core_mass		neutron_rich_core_mass		_Teff	log_L			
log_R		log_g	v_div_csound_surf		og_center_T			
log_center_Rho	0	log_cntr_P		ntr_Rho	log_cntr_T			
center_mu center he4		center_ye center_c12	center_ab center		center_h1			
					surface_cl2			
surface_016		total_mass_h1	total_mass	_ne4	num_retries			
num_backups		num_iters	122	1 0000000000000000000000000000000000000	F 00F	00000000015.000		
1 5000000000000	000005-001	1	433	1.00800800800800800800		999999999991E+080		
1.508008008008		3.4474769709615863E4		99999999986E+081	9.7590609833577726E-004			
9.99964100708		1.6802432558023254E		63792018226E-005	7.8128379403029878E-008			
9.99964100708		1.6802432558023254E-		63792018226E-005	7.8128379403029878E-008			
-2.1749879477		-9.89999999999999866		749457997642E+801	-2.1749879477596203E+001			
-2.17498794775		-9.89999999999999868		999999999986E+801	-2.800800800800808080E+901			
-2.00000000000		-2.08008008008008008		000000000000E+001	-2.80080080080080080E+901			
-2.000000000000		-2.08008008008008008		000000000000E+001	0.000000000000000000000000000000000000			
0.00000000000000	80080E+009	0.008068068068068068068068068	060 0.06006	0000000000E+000	0.0000000000000000E+000			

Text editors:


🐸 Appli	cations : 📝 history.data (~/De	sktop/ 🔳 [PGPLOT Server]	▶- Terminal -			Fr 03 Nov, 14:27 aschool
Open	• +		~/Deskt	history.data pp/mesa_work/example/LOGS		Save 🔯 - + ×
1	1	2	3	4	5	
2	version number	initial mass	initial z	burn minl	burn min2	
3	10000	1.5008008008008008E+901	2.000000000000000000000000000000000000	5.8008008008008088E+801	1.0000000000000000000000000000000000000	
4						
5		1	2		3 4	
6	m	odel number	num zones	star	age log dt	
7		1	433	1.0080080080080080691E-	-005 -4.999999999999991E+000	1.5000000000
8		5	433	7.44160000000000000 -	-005 -4.6832750158095005E+000	1.5000000000
9		10	433	2.5958682111999992E-	-004 -4.2873687855713767E+000	1.5000000000
10		15	432	7.2035107872931792E-	-004 -3.8914625553332525E+000	1.5000000000000000000000000000000000000
11		20	432	1.8668799962237360E-	-003 -3.4955563250951283E+000	1.5000000000
12 13		25	432	4.7198108322034464E-		1.5000000000
13		30	433	1.1818815689988476E-		1.5000000000
14		35	432	2.9483411457712123E-		1.5000000000
15		40	437	7.3438578398454205E-		1.5000000000
14 15 16 17		45	436	1.8281309940044160E-		1.5000000000
17		50	436	4.5497190750010674E-		1.5000000000
18 19		55	435	1.1321901128706655E+		1.5000000000
19		68	436	2.8173257176583335E+		1.5000000000
20		65	436	7.0104823457635836E+		1.5000000000
21		70	436	1.6667756425864425E+		1.5000000000
22		75	440	2.9289378676692756E+		1.5000000000
23		80	441	4.2895669676525905E+		1.5000000000
22 23 24 25 26		85	446	5.7478735782955887E+		1.5000000000
25		90	441 443	7.3096885520671719E+		1.5000000000
26		95		8.9989537818648516E+		1.5000000000
27 28		100 105	444 448	1.0790762476985458E+ 1.2721301308799758E+		1.50000000000
20		105	446			
29 30		115	446	1.4786347688253983E+		1.5000000000
30		115	471 457	1.7007226675382870E+ 1.9405219260559062E+		1.5000000000
32		120	437	2.1985873212456031E+		1.58008008008
31 32 33 34 35 36		125	472	2.4771516685324053E+		1.50000000000
34		135	477	2.7757260407386013E+		1.56006000000
35		140	477	3.0963405901096797E+		1.5000000000
36		145	481	3.4401148256967883E+		1.50000000000
37		150	489	3.8083541085700250E+		1.50000000000
38		155	482	4.2039150151420409E+		115000000000
39		160	482	4.6278718479498025E+		Display line numbers 🖌 8000
40		165	487	5.0824297013353123E+		0000
41		170	490	5.5712348569399092E+		Display right margin B000
42		175	492	6.0948952659399538E+		Highlight current line 🖌 8008
43		180	488	6.6560761443540753E+		8008
44		185	493	7.2595476728585561E+		Text wrapping 8008
-48		100	400	7 0000550300566305		0000

Plain Text - Tab Width: 8 -


Ln 1, Col 1

- e.g. gedit
- You can turn off text wrapping:

inlist_pgstar: changes MESA default settings for on-the-fly plotting. Add, remove, adapt plots

inlist pgstar: changes MESA default settings for on-the-fly plotting. Add, remove, adapt plots

