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Direct connection: SN 1054 best case?

HST CHANDRA 
SN 1054*

● E
exp

= ~0.1 B
● Nucleosynthesis
● “Lightcurve”
● Mass of the Progenitor Star

 
Pulsar

● Spin
● Kick (>100 km s-1)**

● No radius or mass of the NS

BUT: No direct connection of key observables
*e.g. Tominaga+2013, Smith 2013, Yang & Chevalier 2015

Bernhard’s
talk

**e.g. Kaplan+2008



  

NS Masses from 
Binary Systems

Compiled by T. Sukhbold

● Masses from 
● Binaries w/ Pulsars
● Gravitational Waves 

from NS merger

● Constraints high-
density EOS 

● Problem: No
Information about the 
preceding 
Supernova(e)

● The link between SNe 
and NS masses can 
be established only 
statistically

 Next talk 



  

A multi-step process is needed to connect theoretical models of core-
collapse SNe to the observed NS mass distribution!

1. Stellar Evolution Models

 
2. First-principle simulations to understand the expl. mechanism

3. Phenomenological/systematic parameterised models

How to Connect Theoretical Models to Observations?



  

A multi-step process is needed to connect theoretical models of core-
collapse SNe to the observed NS mass distribution!

1. Stellar Evolution Models

 
2. First-principle simulations to understand the expl. mechanism

3. Phenomenological/systematic parameterised models

(4. Population synthesis)

How to Connect Theoretical Models to Observations?



  

● First-principle study

Does the mechanism work?

Simulations in 3D

Only a few models

No long-term evolution yet

● Systematic parameter study

Prediction of observables:

M
Remnant

, E
exp

, M
Ni
, M

Fallback
, ...

Explaining the population of 

core-collapse SNe (CCSNe) and not individual cases

First Step: 

Stellar Evolution Modelling
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Stellar Evolution Models

*Zero-Age Main-Sequence

Directions of stellar evolution

Models from Sukhbold+2014/2016

         (Couch+2015, Müller 2016, Müller+2017)

(e.g. Jones et al. 2016)

● A dense ZAMS* mass grid
is needed to explore the
parameter space:
● Metallicity
● Rotation + magnetic

fields
● binary evolution

● Multi-D effects:
● Validity of the employed 

parameters
● More realistic pre-SN models 

=> large scale perturbations
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Stellar Evolution Models

Directions of stellar evolution

O-burning shell Jones+2016

● A dense ZAMS* mass grid
is needed to explore the
parameter space:
● Metallicity
● Rotation + magnetic

fields
● binary evolution

● Multi-D effects:
● Validity of the employed 

parameters 
● More realistic pre-SN models

=> large scale perturbations
         (Couch+2015, Müller 2016, Müller+2017)

(e.g. Jones+2016)

 Talk by R. Farmer



  

Second Step:

 Understanding the Explosion Mechanism
with First-Principle Models

(Focusing only on the delayed neutrino-driven explosion mechanism.)

 



  

Core Collapse and Shock Stagnation

Janka+2017

Core collapse

Central density reaches
 nuclear density

Core bounce

A Shock wave is launched



  

The Neutrino-Driven Mechanism

Janka+2017

● Shock stagnates

● Critical phase (~ 1s)
for the explosion to set in
and success of the
mechanism

● Competing processes:

● Ram pressure of the
infalling material

● Neutrino heating

=>

➢  critical luminosity concept 
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Status and Developments of First-Principle Modelling

Melson+2015

● 1D models fail (except for the low-mass end)
● 2D models explode routinely and are useful for comparisons

(e.g.  Müller 2015), but seem to be low energetic and with artificial 
geometry

● 3D models seemed to be harder to explode (Hanke+2013)

● Better Microphysics, e.g.
● Nucleon strangeness effecting neutrino

opacity (Melson+2015)
● Muon creation (Bollig+2017)

● Progenitor perturbations 
(Müller 2016 for a review)

=> Computationally very expensive
and mechanism not completely 
understood!



  

Third Step:

Exploring the Supernova Landscape with 
Phenomenological (Parameterised) Models



  

2D Simulations with Simplified 
Neutrino-Transport

e.g. Nakamura et al. 2015

Includes multi-D effects

No long-term evolution

Computationally expensive

Explode to readily compared to

3D simulations with sophisticated

neutrino transport and are often

dominated by the axis

 

Horiuchi+2014, for cautioning against 2D results



  

Analytic models

● Analytic Models + Hydrodynamic Simulations
● Pejcha&Thompson 2015: scaling laws for the critical luminosity      

combined with 1D neutrino-hydro simulations
● Fryer+2012, Belcynski+2012: explosion energy from internal 

energy in the gain layer + thermal bombs

● Müller+2016: Set of differential equations and scaling laws 
 without hydrodynamic simulations based on latest 

Computationally inexpensive

=> Useful to explore the stellar parameter space

Includes some of the multi-D effects (especially after shock revival)

Easy assessment of individual components of the models

(e.g. NS contraction, efficiency of downflows after shock-revival, ...)

Type and final mass of the remnant not determined



  

1D Models with Enhanced Heating/Neutrino Luminosity

● O’Connor&Ott 2011: leakage+ extra heating

● PUSH by Perego+2015: coupling the heavy lepton neutrinos for 
additional heating over a predefined period of time

● PROMETHEUS-HOTB (next slides)

Following the explosion with hydrodynamics

Typically computational inexpensive

Follow the evolution of the explosion up to and beyond breakout

=>Determination of mass and type of remnant possible

Artificial onset of the explosion (freedom in extra heating)

Multi-D effects are hard to include (only imitated)



  

Calibrated 1D Neutrino-Hydro Models with PROMETHEUS-HOTB

HSTHST

● Proto-neutron star is excised and
replaced by an Analytic core-cooling
model with tunable parameters

● Calibration on two well-observed
Supernovae:

● SN 1987A (E
exp 

= (1.3 - 1.5) x1051 erg,

 M
Ni
 ejecta mass of ~0.07 M

⊙
, Neutrino signal, 

    Progenitor star M(He) = 6±1 M
⊙
, M(H) ~ 10 M

⊙
)

● SN 1054 for a low-mass
star (8-10 M

⊙
) based on

observations and 
self-consistent simulations
(e.g. Melson+2015)

 



  

Landscape of 
Explosions and 

Implosions

Ertl 2016
O’Connor&Ott 2011

Pejcha&Thompson 2015

● Non-monotonic
outcome pattern

● Imprint of the core
structure resulting 
from stellar evolution



  

Müller+2016Ertl+2016

Neutron Star Masses

● IMF-weighted (Salpeter initial mass function) NS masses

● Results in NS with typical masses, but strong conclusions are hard to 
make: No binary evolution, Uncertainties in explosion mechanism 
and uncertain stellar evolution modelling



  

Further Observational Constraints for These Models



  

Nickel Masses and Explosion Energies

● Explosion energies range from ~1050 to 2.0x1051 erg

● 0.001 to ~0.2 M
⊙
 of ejected nickel

Hamuy 2003



  

Lightcurves

● 95% of stars result 
in Type IIP 
supernovae

● No type IIL

● No common Ibc
(too broad and faint)

➔ Stripping in binary 
systems?



  

Smartt 2015

Observed Progenitors of Type IIP SNe

(IMF = Salpeter Initial Mass Function)

● No Type IIP SN >20 M
⊙

● Line: Assuming
successful explosions
only up to 18.0 M

 ⊙

(IMF-weighted)

● Dashed line: Assuming 
successful explosions up
to 30 M

 ⊙
(IMF-weighted)



  

Conclusions

Thank you!

A link NS masses and SNe can only be established statistically:

● Stellar evolution: 
● Exploring the parameter space (mass loss, rotation+B-fields, ...)
● Verifying the models with multi-D simulations

● First-principle models to understand the explosion mechanism
=> Kick, Spin, and magnetic fields of NSs

● Phenomenological modelling necessary, because of computational 
cost and uncertainties in the explosion physics

●  These models have to explain the observed NS masses as well as ...
● Chemical abundances
● The red supergiant problem (A lack of exploding high-mass stars)
● Observed SN lightcurves and Nickel ejecta
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