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Outline

Isolated neutron stars in X-rays

@ What do we know?
@ Issues and open questions

@ How to progress?

Title page image: © NASA/ASTRON/ESO



The neutron star census today
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“PULSALting source of Radio” (Bell, 1967)
Hewish et al., Nature 1968

Today: over 2600 catalogued pulsars, most seen in radio
@ rotation powered pulsars
@ millisecond recycled pulsars (mostly binary)
@ radio transients (RRATs, over 110)
@ “Fermi Pulsar Revolution” (over 200 LAT detections)

@ 2% ‘peculiar’ X-ray emitting



Neutron stars at high energies
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De Luca et al. 2005

Thermal and non-thermal components;
photospheric, magnetospheric, heated polar caps



What'’s a typical young neutron star?

‘Crab-like’ pulsars powered by rotation

strong, multi-A, non-thermal
pulsed emission

Becker, Haberl & Triimper 2009
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Atypical (?) young NSs: Magnetars

Violent bursts of high-energy emission, glitches, multi-\ variability

© R. Duncan

phenomenology powered by
decay or re-arrangement of
super-strong B

©ESA/M. Sasaki Thompson & Duncan 1995




Atypical (?) young NSs: CCOs

No optical, radio, gamma counterparts; no pulsar-wind nebula

ROSAT PSPC Puppis-A XMM-Newton

5 arcmin

Hui & Becker 2006
anti-magnetars: is the low magnetic field intrinsic?



The Magnificent Seven

Local group discovered by ROSAT (origin in nearby OB associations)

Isolated young neutron stars

traced back to their place of origin S T

@ Massive stars ——

o

*.
P RXJ1605

onghude
Y M7 Neutron Star with known proper motion

K M7 Neutron Star wio known proper motion

Neuh&user, Tetzlaff+ 2011

@ low Ny, d < 1kpc

@ HST parallaxes

@ proper motions:
kinematic ages

@ X-ray bright and
purely thermal

Much effort to discover new members (outside solar vicinity)

eg Rutledge+08, Pires+09



Peculiar groups of neutron stars

Unknown from radio surveys
@ magnetars

@ magnificent seven
@ CCOs (anti-magnetars)

Only X-ray bright neutron stars
are known (or when in outburst)

Challenge understanding of
emissivity and evolution

Do “normal” pulsars tell
the whole story?

© Duncan, UA/MPE, Hui & Becker



Evolution in the P — P diagram
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Evolution in the P — P diagram

Spin down (s s'1)
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How fast does a neutron star cool down?

log Temperature (Kelvin)
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How fast does a neutron star cool down?
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Alternative evolutionary channels

Strong fields at birth
produce hot and long-P
NSs due to B-field decay

c.f. Pons, Vigano, Popov, Rea, Aguilera et al.

If there’s lots of fallback
accretion after supernova:
hidden B-field scenario

Chevalier, Geppert, Ho, Bernal, Vigano. ..
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Evolutionary channels (1): Field decay

What happens when a magnetar ages?

Coupled evolution: according to initial field (Vigano, Rea, Pons+)
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Big issues (1)

State-of-the-art models built over uncertain assumptions

from Vigano et al. 2013

(A) crust-confined (B) core-extended

@ initial field configuration
@ field dissipation controled by ‘impurity’ of the crust



from Vigano et al. 2013
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Thermal luminosity [erg/s]
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Evolutionary channels (2): the hidden-B scenario

Evidence that some CCOs hide large crustal fields
(Gotthelf & Halpern, Rea, Lai, Luo, Bogdanov..)

Where are the old CCOs?

After field re-emergence:
neutron star spins down, joins
the rest of the population

Braking index and thermal
emission may keep signatures
of past accretion episode

log P (s s7Y)

= CCO
pulsar
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- glitching pulsar
magnetar
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Ho 2015



Big issues (2)

Much theoretical work needed

Conditions determining / preventing fallback
@ deviations from spherical symmetry
@ neutrino-driven explosions
@ convection in the accreting envelope
@ rotation: ejector, propeller
@ large kick velocity

Amount of accreted material
@ determines the level of submergence
@ timescale of re-emergence



More open questions

The “hollow supernova remnant” problem

Large fraction of known supernova remnants lack a detected
compact remnant, despite radio/X-ray searches
(eg Kaspi, Kaplan, Kargaltsev; Samayra Straal’s talk)
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Radio + X-ray INSs cannot constrain
models of B-decay (Gullon+15)

Observability of old magnetars: deeper
fluxes, quiescent level, transient behaviour

Fraction undergoing fallback?
Consequences to the birthrate?
NS-SNR connection: explosion
mechanisms

We need to: c.f. Pires+12,14,15

@ obtain a better sampling of radio
and gamma-ray quiet sources

@ discover and characterise evolutionary
missing links (especially in X-rays)

@ evaluate alternative scenarios
on evolution and observability

© CXC/ASTRON/ESO/NASA



eROSITA is coming soon!

“Mapping the Structure of the Energetic Universe”; ROSAT’s successor

New all-sky X-ray survey
mission on-board Spectrum-RG
(RU/DE collab.; launch: Autumn 2018)

@ unprecedented sensitivity,
angular/energy resolution

@ millions of X-ray sources

@ synergy with multi-\
surveys and facilities
(E-ELT, LSST, Athena, SKA...)

Unique potential (for decades to come) to unveil faint
radio-quiet neutron stars and probe the whole population
Pires+17



Outlook: the future is X-ray bright

NICER ISS payload dedicated to neutron stars
eROSITA new X-ray survey mission
XIPE, IXPE X-ray polarimetry at last
XARM, eXTP high-resolution spectroscopy and timing
Athena, Lynx the new generation

NICER

ROSITA
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© MPE, NASA, ESA, CAS, IAP-INAF

Thank you!
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