Neutron Star Magnetic Fields and Accretion Geometry

Matthias Kühnel

Dr. Remeis-Observatory & Erlangen Centre for Astroparticle Physics University of Erlangen-Nuremberg

in collaboration with

- R. Ballhausen (ECAP), P. Becker (GMU), C. Ferrigno (ISDC), S. Falkner (ECAP),
- F. Fürst (ESAC), P. Jenke (MSFC), P. Kretschmar (ESAC), I. Kreykenbohm (ECAP),
- M. Nakajima (NIHON-U), A. Okazaki (HGU-ARC), K. Postnov (SAI),
- K. Pottschmidt (RESST/UMBC/GSFC), R. Rothschild (UCSD),
- E. Sokolova-Lapa (ECAP), R. Staubert (IAAT), M. Wolff (NRL),
- J. Wilms (ECAP), C. Wilson (MSFC)

Outline: probing neutron star magnetic fields

- Accretion in X-ray binaries
 - Mass transfer
 - Accretion column
- Spin period evolution
 - Coupling at the magnetosphere
 - Angular momentum transfer
- Cyclotron resonant scattering features
 - Landau levels
 - Monte Carlo simulations
- Pulse profile formation
 - Light bending
 - B-field geometry

Accretion in X-ray binaries

Orbit and companion define type of accretion

Orbit and companion define type of accretion

Huge range in variability and mass accretion rate

Neutron Star Magnetic Fields and Accretion Geometry

Eccentricity of orbit modulates mass accretion rate

GX 301-2 Fürst et al. (2011)

Material follows magnetic fields lines

after Davidson & Ostriker (1973)

- Alfvén radius typically 1800 km
- $v{\sim}0.7$ c, hot spot with $T{\sim}10^6$ K

Magnetic field axis and rotational axis are misaligned

Cyclotron absorption in spectra allows us to measure B-field strength

Hercules X-1, Trümper et al (1978)

X-ray spectral shape:

• power law continuum with exponential cutoff due to Compton scatter-

ing

typically modeled with empirical continuum shape (Makishima et al., 1999; Tanaka, 1986)

- cyclotron line (in absorption!) due to strong *B*-field
 - \rightarrow study *B*-field strength

X-ray continuum emission due to bulk and thermal Comptonization

X-ray continuum emission due to bulk and thermal Comptonization

Becker & Wolff (2007)

• radiation pressure stopps material for $L_X > L_{crit} \sim 10^{37} \text{ erg s}^{-1}$ (Becker & Wolff, 2005a,b, 2007; Becker et al., 2012; Postnov et al., 2015b; Mushtukov 2015a)

- $L_{\rm X} < L_{\rm crit}$: gas or collisionless shock
- $L_{\rm X} \ll L_{\rm crit}$: ?

Theoretical models can now be fitted to data

Summarizing the B-field probes

- spin period evolution $\rightarrow B$ -field strength
- cyclotron lines \rightarrow *B*-field strength
- pulse profile shape $\rightarrow B$ -field orientation

caveat: each probe requires precise modelling of the underlying physics

Spin period evolution

Spin period evolution

Accreted matter couples to B-field at Alfvén radius

Ghosh et al. (1977), Ghosh & Lamb (1978a,b)

Neutron Star Magnetic Fields and Accretion Geometry

Spin period evolution depends on M

Galloway, Morgan, & Levine (2004)

Simultaneous flux and period data needed over several weeks

Matthias Kühnel

Neutron Star Magnetic Fields and Accretion Geometry

Various applications in recent literature

Matthias Kühnel

B-field strength still difficult to derive

• degeneracy of parameters distance, radius, mass, *B*-field strength

Need to study larger sample and combine probes!

Kühnel et al. (in prep.)

- different accretion torque theories
- o constrain remaining parameters
 → CRSF, distances from GAIA, mass/radius from NICER

Sugizaki et al. (2017)

Cyclotron Resonant Scattering Features a.k.a. "cyclotron lines"

Quantization of electron energies (Landau levels)

image courtesy F. Schwarm

Cross sections depend on photon energy and angle

Schwarm et al. (2017a)

Simulation: photon spawning and thermal broadening

Schwarm et al. (2017b)

Matthias Kühnel

Neutron Star Magnetic Fields and Accretion Geometry

CRSFs detected with high signal-to-noise by NuSTAR

Fürst et al., 2014

Often detailed analysis required for reliable detections

Neutron Star Magnetic Fields and Accretion Geometry

Higher harmonics are found for a few sources

V0332+53: cyclotron lines at 27, 51, and 74 keV and complex fundamental
line ratios ≠ 2, agrees with QED prediction

Pottschmidt et al. (2005)

V0332+53: cyclotron line energy is time dependent

Matthias Kühnel

Neutron Star Magnetic Fields and Accretion Geometry

V0332+53: cyclotron line depends on luminosity

We measure B-field strength at different heights

Pulse profile shape

Pulse profile shape

Emission pattern is light bended towards observer

- assume (or model) a beam pattern depends on energy, height, ...
- calculate photon trajectories towards observer

Falkner et al. (in prep.)

In principle derive B-field orientation from pulse profiles

Matthias Kühnel

We find complex, asymmetric field geometries

4U 1626-67 Iwakiri et al. (subm.)

- top- and side-wall emission (pencil- and fan-beam)
- relative contribution changes with energy
- off-center magnetic axis azimuthal offset ${\sim}10^\circ$
- inclined magnetic axis
 ~16-21° to rotational axis

Matthias Kühnel

Summary

Three tools for magnetic field investigationsx:

- spin period evolution
 - magnetic coupling of accreted material
 - \rightarrow angular momentum transfer \rightarrow spin-up
 - parameter degeneracy \rightarrow difficult to measure *B*-fields
- cyclotron lines
 - absorption on quantized electron levels in strong B-field
 - \rightarrow direct measurement of *B*-field strength
 - line energy correlates with luminosity
 - ightarrow line formation at certain height above surface
- pulse profile shape
 - model emission pattern using 3D light bending
 - \rightarrow investigate *B*-field orientation
 - asymmetric and inclined magnetic fields