High mass X-ray binaries

Martin Quast

Argelander Institut für Astronomie

December 11, 2017

X-ray binaries

Mass transfer in SGXB

Wind or Roche? That is the question!

Bondi-Hoyle model: Accretion radius (by energy) Accreted fraction by geom. cross section

$$\dot{M}_{acc} = \frac{G^2 M_A^2}{a^2 v_w^4} \dot{M}_u$$

(Bondi 1952)

Roche lobe: $\Phi = \Phi(L_1)$

 \approx sphere with R_L

$$R_L = f(q) \times a$$
$$q = M_D/M_A$$

(cf.Eggleton 1983)

Orbital evolution

Isotropic reemission (Tauris & van den Heuvel 2006)

What's the issue with RLOF?

Mass-Radius exponents $\zeta_R = \frac{\partial \log R_{\star}}{\partial \log M}$ and $\zeta_L = \frac{\partial \log R_L}{\partial \log M}$ MT stable if $\zeta_R > \zeta_L$

What's the issue with RLOF?

Mass-Radius exponents $\zeta_R = \frac{\partial \log R_{\star}}{\partial \log M}$ and $\zeta_L = \frac{\partial \log R_L}{\partial \log M}$ MT stable if $\zeta_R > \zeta_L$

Martin Quast HMXB

What's the issue with RLOF?

Mass-Radius exponents $\zeta_R = \frac{\partial \log R_{\star}}{\partial \log M}$ and $\zeta_L = \frac{\partial \log R_L}{\partial \log M}$

In the envelope:

Set up binary models

 \Rightarrow 3 donor stars + 3 M_{\odot} accretor (point mass)

 \Rightarrow choose orbital seperation that $R_{\star} = R_L$

Martin Quast HMXB

Mass transfer evolution

Orbital evolution

ULX

Ultraluminous X-ray sources

 \rightarrow objects with $L_X > 10^{39}$ erg/s (i.e. brighter than 10 M_{\odot} BH)

NGC 7793 P13

 \rightarrow shows X-ray pulsations (NS) and luminosity of $\sim 10^{40}~{\rm erg/s}$

 $ightarrow P_{s} = 417 \,\text{ms}, \ \dot{P}_{s} = 3 \times 10^{-11} \,\text{ss}^{-1}, \ P_{\text{orb}} = 64 \,\text{d}, \text{ donor mass} \sim 20 \,\text{M}_{\odot}$ (Fürst + 2017)

At least two more NS hosting ULXs!

ULX

Evolved $27 M_{\odot}$ main sequence donor and a...

Conclusion:

- 1 We found a new way to stabilize Roche mass transfer!
- 2 Need: Surface He-gradient. Remove H-rich envelope.
- Observational supports:
 - \Rightarrow Low Be/SGXB ratio in MW
 - \Rightarrow Overluminousity / He-abundances of HMXB
 - \Rightarrow NS hosting ULXs

Outlook:

- 1 How actually remove H-rich envelope?
- Including this effect, what is expected for Be/SGXB from population synthesis?

