Spectral and Timing properties of Neutron Star Low-Mass X-ray Binaries

Andrea Sanna University of Cagliari

in collaboration with: Luciano Burderi (Unica) - Alessandro Riggio (Unica) Tiziana Di Salvo (Unipa) - Fabio Pintore (IASF-INAF)

11th Bonn workshop on "Formation and Evolution of NS" - 11th Dec 2017

Low-Mass X-ray Binaries

 late-type star $\leq 1 \, \mathrm{M}\odot$ •age > Gyr compact object **Neutron Star Black Hole** White Dwarf • $L_{opt}/L_x << 0.1$

Low-Mass X-ray Binaries

Neutron Stars

• mass $\simeq 0.5 - 2.5 \text{ M}\odot$

• radius $\simeq 5 - 20 \text{ km}$

• density $\sim 5 - 10 \rho_{nuc}$

• magnetic field $10^7 - 10^{15}$ Gauss

Neutron Stars

Özel & Freire 2016

Neutron Stars

Özel & Freire 2016

NS M-R measurements

- Thermonuclear X-ray Bursts
- Continuum spectrum method
- Spectral line method
- Burst oscillation method
- Accretion-powered millisecond pulsar method
- Kilohertz Quasi-periodic Oscillation method
- Broad relativistic Iron line method
- Quiescent emission method

NS LXMB: reflection spectrum

NS

Main reflected features:

• Fe Ka line (6.4 keV)

• Fe absorption edge (7.1 keV)

disk

• Compton hump (~10-30 keV)

NS LXMB: reflection spectrum

NS LXMB: Fe emission lines

What do we get from them?

- Ionisation parameter and element abundance
- Disk emissivity index
- Inner and outer radii of the disk emitting region

Potentially we could constrain M & R \rightarrow EoS

NS LXMB: X-ray type-I Bursts

Why are they useful?

Spitkovsky, Levin, & Ushomirsky (2002)

1. They originate from the NS surface, hence mass, radius and spin freq. influence their properties;

- 2. Very bright with respect to the continuum emission. Very easy to isolate the surface emission;
- 3. Large sample in more than 80 sources.

NS LXMB: X-ray type-I Bursts

NS LXMB variability

Aql X-1

X-ray transients:

 Outburst phase (day-months) L_x=10³⁶-10³⁸ erg/s

• Quiescence phase (months-years) L_x=10³²-10³⁴ erg/s

NS LXMB: very rapid variability

NS LXMB: Bursts oscillations SAX J1808.4-3658 confirms that the 20 asymptotic frequency of burst 404 Intensity (10³ counts per s per PCU oscillations is the spin frequency of 15 402 the NS Frequency (Hz) $v_{burst} = v_s \approx 401 Hz$ 400 10 398 396 10 30 20 0 404 Intensity (10³ counts per s per PCU 15 402 Frequency (Hz) 400 10 Mary Mary - Mary Mary Mary 398 5 396 0.5 1.0 -0.5Seconds since start of burst

Kuznetsov 2002

4U 1636-53

 shows strong broad iron emission line

shows plenty of kHz QPOs

 simultaneous high-time resolution (RXTE) and moderate-energy resolution (XMM-Newton) observations

kHz QPO

Sanna et al. 2014

Assumption: kHz QPO frequency reflects the orbital frequency

Accreting Millisecond X-ray pulsars

Name	P_spin (ms)	P_orb (h)	Ref
SAX J1808.4-3658	2.5	2.0	Wijnands & van der Klis 1998
XTE J0929-314	5.4	0.73	Galloway et al. 2002
XTE J1751-305	2.3	0.7	Markwardt et al. 2002
XTE J1814-338	3.2	4.0	Markwardt et al. 2003
XTE J1807-294	5.3	0.67	Markwardt et al. 2003
IGR J00291+5934	1.7	2.5	Galloway et al. 2005
HETE J1900.1-2455	2.7	1.4	Kaaret et al. 2005
SWIFT J1756.9-2508	5.5	0.9	Markwardt et al. 2007
Aql X-1	1.8	19	Casella et al. 2007
SAX J1748.9-2021	2.3	8.8	Altamirano et al. 2007
NGC 6440 X-2	4.8	0.96	Altamirano et al. 2010
IGR J17511-3057	4.1	3.5	Markwardt et al. 2009
SWIFT J1749.4-2807	1.9	8.8	Altamirano et al. 2010
IGR J1749.8-2921	2.5	3.84	Papitto et al. 2011
IGR J18245-2452	3.9	11.03	Papitto et al. 2013
XSS J12270	1.7	6.9	Bassa et al. 2014
PSR J1023+0038	1.7	4.75	Archibald et al. 2015
MAXI J0911-655	2.9	0.74	Sanna et al. 2017
IGR J17062-6143	6.1	>0.28	Strohmayer & Keek 2017
IGR J16597-3704	9.5	0.77	Sanna et al. 2017

AMXPs: Recycling Scenario

Transitional MSP

Radio PSR (rotation power)

X-ray pulsar (accretion power)

• PSR J1023+0038

• IGR J18245-2452

• XSS J12270-4859

Did Transitionals reach the end of their LMXB phase?

Question: Can the LMXB phase finish at all??

For close systems (i.e. relatively short Porb), even if the companion star is detached, sooner or later GR will bring it in contact, resuming mass transfer and accretion.

What if there is a process able to stop the accretion phase and start a Millisecond Radio Pulsar (detached) phase: i.e. the radiation pressure from the Millisecond Pulsar. (see also Chen et al. 2013).

The Radio-Ejection hypothesis

Outburst: accretion phase

Quiescence: radio ejection

Onset of long Radio-Ejection phases Burderi et al. 2001, ApJ

(Burderi et al. 2001, Di Salvo et al. 2008)

NS LXMB: pulse profile

SAX J1808.4-3658

NS LXMB: pulse profile

Light bending

 Gravitational redshift

• Relativistic beaming

Thanks for the attention!

AMXPs: Orbital Evolution

SAX J1808.4-3658

Reference: outburst 1998

For each outburst we calculated:

 $T_{NOD_{PRE}} = T_{NOD_{98}} + NP_{ORB_{98}}$

 $\Delta T_{NOD} = T_{NOD} - T_{NOD_{PRED}}$

(Sanna et al. 2017)

AMXPs: Orbital Evolution $f(N) = \Delta T_{NOD} + \Delta P_{ORB}N + \frac{1}{2}P_{ORB}\dot{P}_{ORB}N^2$

 $\dot{P}_{ORB} = 3.6(4) \times 10^{-12} \text{s/s}$

Differently from the 2011 orbital timing, no significant cubic term (P_{ORB}) is required.

Residuals appear like fluctuations around a global parabolic trend.

Theory of Dynamical (Orbital) evolution

- **1.** J_{TOT} conservation
- 2. Kepler's third law
- **3. Contact condition** $\dot{R}_{L2}/R_{L2} = \dot{R}_2/R_2$
- 4. Companion well described by $R_2 \propto M_2^n$ 5. j/J driven by GR

$$\dot{P}_{ORB} = -1.4 \times 10^{-12} \, m^{5/3} \, q (1+q)^{-1/3} \, P_{2h}^{-5/3} \, \left[\frac{n-1/3}{n-1/3+2g} \right] \, \mathrm{s}_{2h}$$

where

$$g(\beta, q, \alpha) = 1 - \beta q - (1 - \beta)(\alpha + q/3)/(1 + q)$$

$$q = m_2/m_1$$
 $\dot{M}_1 = -\beta \dot{M}_2$ $\alpha = l_{ej}/\Omega_{ORB} r_2^2$

(Di Salvo et al. 2008)

 $\dot{P}_{ORB} \simeq \dot{P}_{ORB_{OBS}}$ for $\alpha \sim 0.7$

matter ejected from the inner Lagrangian point.

The Radio-Ejection hypothesis

Outburst: accretion phase

Quiescence: radio ejection

Onset of long Radio-Ejection phases Burderi et al. 2001, ApJ

(Burderi et al. 2001, Di Salvo et al. 2008)

Thanks for the attention!

Alternative mechanism: Applegate & Shaham model for periodic orbital modulations Gravitational Quadrupole Changes (GQC)

Hartman et al. (2008) and Patruno et al. (2011) proposed that magnetic activity in the companion is responsible for the orbital variability of SAXJ1808 – as discussed by Applegate & Shaham (1994) and Arzoumanian et al. (1994) to explain the orbital varability observed in PSR B1957+20

Applegate & Shaham: basic concept

Applegate & Shaham: sources of energy

• Tidal dissipation: to take into account the ejected matter we included a parabolic trend to fit the differential correction ΔT_{NOD}

$$A = 4(0.7) \text{ s}$$
$$P_{mod} = 14.9(2.7) \text{ yr}$$
$$\dot{P}_{orb} = 2.3 \times 10^{-12} \text{ s/s}$$
$$\dot{m} = 8.8 \times 10^{-10} \text{ M}_{\odot}/\text{ yr}$$

Thanks for the attention!