Equation of state of high-density matter

Niels-Uwe Friedrich Bastian University of Wroclaw, Institute of Theoretical Physics

Bonn, 12. December 2017

Strongly interacting matter

Outline

(light) Nuclear clusters

- medium modification of free particles
- selfenergy

- Cluster-meanfield
- Cluster selfenergy, screening and Pauli blocking

- ideal mixture and chemical picture
- NSE

- medium modifications of particles and correlations
- GBU

• cluster-virial expansion with medium effects

- virial expansion and twoparticle correlation
- Beth-Uhlenbeck formula

• Cluster-virial expansion

```
G. Ropke, N.-U. Bastian, D. Blaschke,
T. Klahn, S. Typel and H.~H. Wolter,
Nucl. Phys. A 897, 70 (2013)
```

(light) Nuclear clusters

(light) Nuclear clusters

(heavy) Nuclear clusters

Outline

Homogeneous nuclear matter

- No clusters due to Pauli blocking
- Mean-field dominates
- Variety of relativistic and nonrelativistic models
- Parameters usually adjusted to nuclear data
- Feature a first-order phase transition for liquid-gas transition with critical endpoint.

Constraints up to saturation density

[•] Chiral effective field theory

[•] Ab initio calculation for pure neutron matter at $n \lesssim n_0$

T. Fischer, et. al., (2014) EPJA50, 46

Constraints at saturation density

Symmetry energy

Unitary Constraint

Tews, Lattimer, Ohnishi, Kolomeitsev, arXiv:1611.07133

Constraints above saturation density

P. Danielewicz, et.al., Science **298** (2002) 1592

Constraints above saturation density

Massive precisely measured neutron star

$$M = (2.01 \pm 0.04) M_{\odot}$$
 and

$$M = (1.97 \pm 0.04) M_{\odot}$$

• Any EoS must reproduce them!

J. Antoniadis et al., Science 340, 1233232 (2013) P. Demorest et al., Nature (London) 467, 1081 (2010)

Constraints above saturation density

Constraints by GW of neutron star mergers

- Radius of $M = 1.6 M_{\odot}$ $R \ge 10.30 {\rm km}$
- Radius of maximal mass $R \ge 9.26 \mathrm{km}$

A. Bauswein et.al., arXiv:1710.06843v2

Hyperon Puzzle

 $\mathcal{L} \sim \bar{\Psi} \Gamma_{\Phi} \Phi \Psi + \dots$

Outline

Thermodynamic Bag Model

Nambu-Jona-Lasinio Models

Density functional approach: Stringflip model

Low density

- Color field lines compressed by dual meissner effect
- String-tension high

G. Ropke, et. al., Phys.Rev. D34 (1986) 3499-3513 Kaltenborn, Bastian, Blaschke, PRD 96, 056024 (2017)

High density

- Dual superconducting vacuum occupied by hadrons
- Pressure on field lines reduced
- Effective string-tension reduced

$$\sigma = \Phi \sigma_0$$

Stringflip model – effective mass

Mean-field model

Kaltenborn, Bastian, Blaschke, PRD 96, 056024 (2017)

Hybrid EOS - phasetransition

• 2-phase approach: phase transition via Maxwell construction

Kaltenborn, Bastian, Blaschke, PRD 96, 056024 (2017)

Possibility of 1st order PT at hight densities

1st order PT - Twins

• Star configurations with same masses, but different radii

- New class of EOS, that features high mass twins
- NASA NICER mission: radii measurements ~ 0.5 km
- Existence of twins implies 1st order phase-transition and hence a critical point

Benic, Blaschke, Alvarez-Castillo, Fischer, Typel, A&A 577, A40 (2015)

Last Slide

Conclusions

- Sub-saturated EoS is well constraint; many commonly used EoS are ruled out
- Quantum statistical description of light and heavy clusters necessary
- A first order phase-transition with a big latent heat would result in measurable signals
 - It carries the supernova of super massive stars and creates two solar mass neutron stars at birth
- Appearance of strange quark matter mostly speculative

Outlook

• Ongoing and future experiments (NICER, NICA, FAIR, GW) will provide further insights

Collaboration

• David Blaschke, Tobias Fischer, Stefan Typel, Gerd Röpke, Mark Kaltenborn, Yuri Ivanov

Thank you!