2A 1822-371 as a Super-Eddington Source

Ann-Sofie Bak Nielsen, PhD Student, Leiden Observatory

Collaborators: Alessandro Patruno, Caroline D'Angelo

Summary

1) The surface of the pulsar is never seen

4) Super-Eddington source ($B \sim 10^{10}$ G)

2) Optically thin Accretion disc corona (ADC)

3) Similar Long-term and Short-term spin up

Meet 2A 1822-371

1) The Light curve

Eclipsed LMXB

Edge on view

50% eclipsed

Extended X-ray emitting region \rightarrow wide eclipses, partially eclipsed

Heinz et al. 2001

1) The surface of the NS is never seen

Is the surface seen?

 \rightarrow Fractional amplitude vs. orbital phase

 \rightarrow Eclipsed vs. non-eclipsed data

No difference in eclipsed/non-eclipsed \rightarrow Surface of NS never seen

Bak Nielsen et al. 2017

For more details on the light curve and eclipses see e.g. Heinz & Nowak 2001 & Parmar et al. 2000

2) The Accretion Disk Corona

Edge on, inclination ~ 83°

Spectral analysis:

- \rightarrow Extended x-ray emitting region
- $\rightarrow \text{ADC}$
- \rightarrow Evaporated material
- \rightarrow Very opaque corona

For other discussion on ADC see e.g. White & Holt 1982 and Iaria et al. 2013. For discovery of pulsations see Jonker & van der Klis 2001.

2) The Accretion Disk Corona

Previously \rightarrow ADC optically thick ($\tau \sim 10-20$) (post 2001)

- \rightarrow Problem
 - \rightarrow coherent pulsations

Model:

- \rightarrow BB + Power law
- → inverse compton up-scattering code (Monte Carlo)

Results:

- \rightarrow Possible non opaque medium (Opt. thin)
- \rightarrow ADC (τ ~1) (norm rms deviation of 28%)

For other discussion on ADC see e.g. White & Holt 1982 and Iaria et al. 2013. For discovery of pulsations see Jonker & van der Klis 2001. MC Compton code see Giannios & Spruit 2004.

3) Long-term spin-up

2A 1822-371 shows spin-up over 13 years

$\dot{\nu} = 7.6(8) \times 10^{-12} \,\mathrm{Hz\,s^{-1}}$

 $\upsilon \sim 1.69 \; Hz$

- $P_{s} \sim 0.59 s$
- \rightarrow Varying residuals short term changes?

Short-term spin-up

- Phase connected
- Length of 8-10 days
 - ~1-11 July 2001
 - \sim 2-9 August 2002

$$\dot{\nu}$$
=6.7(4)×10⁻¹² Hz s⁻¹
 $\dot{\nu}$ =8.2(5)×10⁻¹² Hz s⁻¹

Bak Nielsen et al. 2017

4) A Super-Eddington source

Weakness of model

- \rightarrow Needs Eddington limited accretion
- → Orbital period evolution not explained by conservative mass transfer
- $\rightarrow \dot{P}_{h}$ possibly due to huge mass loss
- \rightarrow Or donor star out of thermal equilibrium
- $\rightarrow \dot{M}_{tr}$ not via Ang. Momentum loss (magnetic breaking/Grav. radiation)

Mass transfer proceeds on thermal timescale

$$\rightarrow \tau \sim 10^{7} \text{yr} \rightarrow \text{So } \dot{\text{M}}_{\text{tr}} \sim 10^{-7} \text{M}_{\odot}/\text{yr} \rightarrow \dot{\text{M}}_{\text{Edd}} \sim 10^{-8} \text{M}_{\odot}/\text{yr}$$

4) A Super-Eddington source

Test if \dot{M}_{tr} explains the orbital evolution $\rightarrow \dot{a}/a \sim 2\dot{P}_{b}/3P_{b}$

 \rightarrow Similar to within an order of magnitude

 \dot{M}_{tr} super Eddington \rightarrow close to idea for ULX \rightarrow King & Lasota 2016 idea for ULX as NS

Following King & Lasota 2016, we find: $\rightarrow R_{sph} \sim 10^7 cm$ $\rightarrow R_m \sim 10^6 \cdot 10^7 cm$ $\rightarrow B$ -field $\sim 10^{10}G$ (at poles)

Img. Credit: NASA

4) A Super-Eddington source

Bak Nielsen et al. 2017

4) A Super-Eddington source - Tests

Tests:

- Is the magnetic field ~ 10^{10} G
 - \rightarrow NuStar observation confirm/contradict 10¹²G B-field
- Source should not show Torque reversal
 - \rightarrow Similar to what 4U 1626-67 or GX1+4 does
- A Jet/outflow should be present (Radio) \rightarrow If beaming is present

Img. Credit: NuStar

Summary

1) The surface of the pulsar is never seen

4) Super-Eddington source (B~10¹⁰G)

2) Optically thin Accretion disc corona (ADC)

3) Similar Long-term and Short-term spin up

Summary

1) The surface of the pulsar is never seen

4) Super-Eddington source (B~10¹⁰G)

Thank you!

°°• 🦱

2) Optically thin Accretion disc corona (ADC)

3) Similar Long-term and Short-term spin up

Extra Slides

5) Comparison to ULX sources

5) Comparison to ADC sources

SS 433 similar geometry to 2A 1822-371

Dotan et al. 2011

5) Comparison to ADC sources

5) Comparison to ULX sources

3 know ULX-pulsars, M82 X-2, NGC 7793 P13, NGC 5907

 \rightarrow Sinusoidal pulse profiles

3) Short-term spin-up

Short-term spin-up

- 2 data segments
- Phase connected
- Length of 8-10 days
 - ~1-11 July 2001
 - $\sim 2\text{-}9$ August 2002

$$\dot{\nu}$$
=6.7(4)×10⁻¹² Hz s⁻¹
 $\dot{\nu}$ =8.2(5)×10⁻¹² Hz s⁻¹

Figure shows 1-11 July 2001 data

Bak Nielsen et al. 2017

5) Comparison to ADC sources

Some ADC sources have spectra that drop off at ~ 8-12keV \rightarrow 4U 1624-49 \rightarrow 2S 0921-630 (?)

4U 1624-49, AC 211, MS 1603+2600 have little info on spectra or spectra does not seem to show cut-off

Iaria et al. 2015

Meet the telescope

Rossi X-ray Timing Explorer (RXTE) Launched in 1995 Operating 1995-2012

2A 1822-371: 28 June 1998 – 30 November 2011

2) The Accretion Disk Corona

Previously \rightarrow ADC optically thick ($\tau \sim 10-20$) (post 2001)

- \rightarrow Problem
 - \rightarrow coherent pulsations

So look at the spectra + models of spectra \rightarrow cut-off PL, BB, compTT ... \rightarrow cut-off at ~10keV

Future of 2A 1822-371

Possible torque reversal system 4U 1626-67 \rightarrow spin 7.66s \rightarrow Spin freq. 0.13 Hz \rightarrow P_b~0.69 hr

Spin up over 13 years Spin down over 18 years 40 years of observation

Show same spin up/down time in both states \rightarrow 5000yrs

Torque reversal for 2A 1822-371?

Chakrabarty et al. 1997