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The Triple System



PSR J0337+1715

• Discovered as part of the 2007 GBT drift scan survey
• Consists of a hierarchical triple:

• 1.4M⊙ radio pulsar with a period of 2.73 ms
• 0.2M⊙ inner white dwarf in a 1.6-day orbit
• 0.4M⊙ outer white dwarf in a 327-day orbit

Image © SKA office
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The Strong Equivalence Principle



The Strong Equivalence Principle

The Strong Equivalence Principle (SEP) states:
• All experiments, including gravitational ones, give the
same result regardless of which inertial frame they
are carried out in

And in particular:
• gravitational binding energy falls the same way as
other mass, or

• MG = MI even for objects with strong gravity.
Most alternatives to GR violate the SEP at some level.

=
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Effects of an SEP violation

Key idea: test whether two bodies fall
the same way in the gravitational field
of a third
Need: binary falling in an external
gravitational field

• Earth and Moon falling in Sun’s
gravity (LLR)

• Pulsar-WD binary falling in Galactic
potential (e.g. Gonzalez et al.)

• Triple system: pulsar and inner WD
falling in gravity of outer WD

Fractional difference in acceleration (∆)
gives rise to excess eccentricity in the
direction of the external acceleration
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Timing the Triple System



Observations

Tel. Band Num. Hours Date range

AO 1400 92 58.9 2012 Mar – 2017 Mar
GBT 1400 172 236.0 2012 Feb – 2017 May
WSRT 1400 439 836.7 2012 Jan – 2013 Jul
AO 430 36 12.9 2012 May – 2017 Mar
WSRT 350 20 17.3 2012 Feb – 2013 Jul

Arecibo Observatory (AO) Green Bank Telescope (GBT) Westerbork Synthesis Radio Telescope

(WSRT)
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Relativistic timing model

• Nordtvedt (1985) derives a “point particle” Lagrangian
• Taylor expansion around the Newtonian Lagrangian
• Lorentz invariance and symmetry used to eliminate terms
• Bodies may contain strong fields but internal structure is frozen
• Fields away from bodies approximated to first post-Newtonian
order

• Computer algebra straightforwardly yields equations of motion
• Direct integration simulates orbits
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Testing the SEP

In principle we simply:

• include ∆ in the timing model,
• fit timing model to TOAs, and
• determine best-fit values and uncertainties.

Ideally, the value of ∆ and its uncertainty would determine how
well we constrain SEP violation and whether GR is violated.

But: only correct once we’ve accounted for all systematics, and
formally the effects of ∆ are constrained at the 7 ns level. 6



The signature of an SEP violation

Key idea: look for structure in the residuals that looks like SEP
violations.

SEP violation produces excess eccentricity in the inner binary
pointed at the outer binary: a sinusoid with frequency fouter − 2finner.
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Wiggles in our residuals

Look at sinusoids with frequency kfouter + lfinner:
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An Upper Limit on SEP Violation



An upper limit on SEP violation

Our data sets a preliminary upper limit on wiggles like the SEP
violation signature of 50 ns amplitude. This corresponds to
constraint that for a 1.4378M⊙ neutron star:

|∆| < 1.6× 10−6 (Triple system)

For comparison, wide pulsar-white-dwarf binaries falling in the
Galactic potential give:

|∆| ≲ 4.6× 10−3 (WB)

But: how do we compare this to lunar laser ranging or dipole
gravitational wave tests?
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Weak- versus strong-field tests

Within the PPN framework, there’s a simple relation,

∆ = ηEB, (1)

where EB is the fractional binding energy of the test mass. For the
earth, EB = 4.6× 10−10 and lunar laser ranging can constrain
|η| ≲ 10−3.

In general, though,

∆ = ηEB + η2E2B + · · · , (2)

and our pulsar has an EB of 0.1–0.15, so we can’t obtain a clean
constraint on η.

We must use strong-field theories to compare different tests.
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Alternative theories of gravity

Higher dimensionsHigher dimensions

Lovelock
theorem

Lovelock
theorem

WEP violationsWEP violations

Diff-invar. violationsDiff-invar. violationsExtra fieldsExtra fields

Nondynamical fieldsNondynamical fields Lorentz-violationsLorentz-violations

Einstein-Aether
Horava-Lifshitz

n-DBI

Palatini f(R)
Eddington-Born-Infeld

dRGT theory
Massive bimetric 

gravity

Scalars

Scalar-tensor, Metric f(R)
Horndeski, galileons

Quadratic gravity, n-DBI

Vectors

Einstein-Aether
Horava-Lifshitz

Tensors

TeVeS
Bimetric gravity

Dynamical fields
(SEP violations)

Dynamical fields
(SEP violations) Massive gravityMassive gravity

Image from Berti et al. 2015 11



Quasi-Brans-Dicke scalar-tensor theories

These theories include a scalar field ϕ in addition to the metric that
mediates gravity. Matter responds to a modified version of the
metric:

g̃µν = e2(α0ϕ+β0ϕ
2/2)g∗µν

The scalar field is sourced in matter:

□ϕ = −4πG∗

c4 (α0 + β0ϕ)T∗

If β0 ≲ −4 spontaneous scalarization can occur, resulting in
order-unity deviations from GR in strong fields, no matter how
small the weak-field effects are.
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Our constraint on quasi-Brans-Dicke theories
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Appendix

Slides that follow are in case of questions.



Basic Timing
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lt-s
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• Microsecond-level timing allows measurement of the system
• Orbits are computed by direct integration
• Three-body interactions break the usual degeneracies without
reference to relativistic effects, for example:

• System inclination is 39.1◦ and the orbits are nearly coplanar
• Pulsar mass is 1.4378(13)M⊙



The Weak Equivalence Principle

Dave Scott of Apollo 15 dropping a hammer and a
feather. Painting by Alan Bean.

The Weak Equivalence Principle
states:

• All non-gravitational
experiments give the same
result regardless of which
inertial frame they are carried
out in

And in particular:
• The following fall identically:
proton rest mass, nuclear
binding energy, magnetic
fields…, or

• gravitational mass equals
inertial mass regardless of
composition.

This has been tested to exquisite
accuracy in laboratory experiments.



The Weak Equivalence Principle

Torsion pendulum for WEP tests; from Wagner et al.
2012

The Weak Equivalence Principle
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The Strong Equivalence Principle

Lunar Laser Ranging ground station in operation.
Photo courtesy of NASA.

The Strong Equivalence Principle
states:

• All experiments, including
gravitational ones, give the
same result regardless of which
inertial frame they are carried
out in

And in particular:
• The following fall identically:
proton rest mass and
gravitational binding energy, or

• gravitational mass equals
inertial mass for compact
objects.

This requires astrophysical
experiments.



Effects of the interplanetary medium

The ecliptic latitude of our source is only 2.1 degrees, so our line of
sight passes close to the Sun every March. Using a simple model of
the IPM, and assuming a density of 10 electrons per cubic
centimeter at 1 AU, we obtain:
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Data processing

• Custom data processing pipeline
• Follows NANOGrav “how we do it” paper except:

• Include WSRT
• Realign with short-term ephemeris
• Matrix template matching
• Extra manual RFI zapping
• Summary plot per observation

• TOAs every 20 minutes × 20 MHz at 1400 MHz
• 25153 TOAs currently in use
• 1.2 µs median uncertainty



Data processing
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PSR J0337+1715 observation 56015.80_AO_1400
    Observed: AO lbw Processing: tuned2
    Template: 56412.76_GBT_1400.rmset.scrunch.sm TOAs: aligned
    Center frequency: 1380.8 MHz
    Length: 2795.4 s Bandwidth: -800.0 MHz
    Maximum smearing: 0.08 µs
    Signal-to-noise ratio overall: 404.0 Average: 94.3
    RMS residual: 1.41 µs # TOAs: 76
    Mean residual uncertainty: 0.68 µs
    Residual reduced χ2: 1.42
    



Data processing
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PSR J0337+1715 observation 56477.53_AO_1400
    Observed: AO lbw Processing: tuned
    Template: 56412.76_GBT_1400.rmset.scrunch.sm TOAs: mueller
    Center frequency: 1380.8 MHz
    Length: 2006.9 s Bandwidth: -800.0 MHz
    Maximum smearing: 0.08 µs
    Signal-to-noise ratio overall: 204.5 Average: 112.0
    RMS residual: 1.67 µs # TOAs: 50
    Mean residual uncertainty: 0.30 µs
    Residual reduced χ2: 6.24
    



Data processing

• Custom data processing pipeline
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Timing model

No adequate formula is known for directly describing the orbit, so
we use direct integration of equations of motion:

Fj = Mjaj, (3)

and
Fj = −

∑
k

GMjMk

r2jk
r̂jk (4)

A standard ODE solver allows us to calculate an orbit given initial
conditions.

This scheme is easily adapted to allow gravitational mass different
from inertial mass.
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Known systematics

Cause Remedy

Profile variation with frequency TOAs no more than 20 MHz
Telescope polarization variations Matrix template matching
Intrinsic profile variations ?
Interstellar DM variations Variable DM fitting
Interplanetary medium effects IPM fitting
Tidal effects in inner WD Too small
GW losses Too small
Red noise Too small at freq. of interest
Uncertainty in DE430 ephemeris Position fitting
Kopeikin and inverse parallax Too small
Kabouters ?
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We need to estimate the impact of unknown or poorly modeled
systematics.



Measuring SEP violations

Lunar Laser Ranging ground station in operation.
Photo courtesy of NASA.

Theoretical framework (weak field):
• Measured quantity: fractional
difference in accelerations ∆

• MG = (1+∆)MI

• Theory (Nordtvedt) parameter: η
• For mass M and gravitational
binding energy Eg,

∆ = η
Eg
M

Lunar Laser Ranging:
• |∆| ≲ 2× 10−13

• Earth Eg/M ∼ 4.6× 10−10

• |η| ≲ 10−3

Neutron star Eg/M is 0.1–0.15!
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