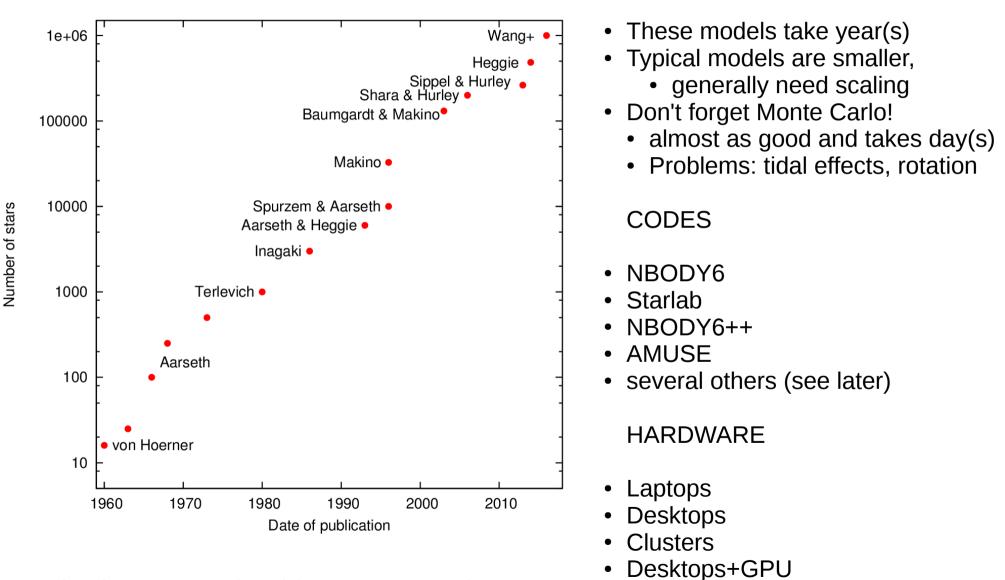
# Numerical modeling of star clusters and their evolution

**Douglas C. Heggie** 

## University of Edinburgh, UK


## Outline

Models of evolution
 Focus: *N*-body codes

 Models for fitting to observations
 Focus: Potential escapers

Context: globular star clusters

## Progress in N-body modelling



Clusters+GPU

Thanks to Anna Sippel for some corrections

3

#### What was published in the last 12 months?

| Category             | Number | ADS query                | % real | Real Number |
|----------------------|--------|--------------------------|--------|-------------|
| Observational papers | 1524   | star+cluster+observation | 26%    | 400         |
| Simulation papers    | 449    | star+cluster+simulation  | 22%    | 100         |

Of the simulation papers....

| N-body simulations | 118 | +body                | 57 |
|--------------------|-----|----------------------|----|
| Monte Carlo        | 43  | +(Monte Carlo MOCCA) | 17 |

Of the N-body simulation papers (after further pruning, e.g. abstracts, papers on tails, etc)

| NBODY6         | 17 | φ <b>GPU</b>    | 1  |
|----------------|----|-----------------|----|
| STARLAB        | 6  | NBODY6tt        | 1  |
| AMUSE          | 4  | GANDALF         | 1  |
| NBODY6++       | 4  | Hermite order 6 | 1  |
| HiGPUs         | 3  | phiGRAPEch      | 1  |
| NBODY4         | 1  |                 |    |
| Hermite+GRAPE9 | 1  | Total           | 41 |

Always quote your code! See astro-ph/1611.06232

## Making N-body codes work for all

- "My code has bugs in it" (Teuben+ 2016)
- Wide variety of scientific problems, operating systems, hardware
- Software developers can't cater for everyone
- Many individual users have experienced problems, and devised solutions, modifications, workarounds, personalisations, etc
  - These circulate by gossip, if at all
- Community efforts
  - Early MODEST was devoted to software
  - MODEST goes underground: occasional meetings of Nbody users (Cambridge 2009, Kobe 2012, Prague 2015, Lund 2015, ...)
  - No publications, but....

## The NBODYx Wiki

- Idea emerged at Lund, September 2015
- https://github.com/nbodyx/Nbody6/wiki
  - Share your personal bug fixes
  - Post solutions for problems you encounter
  - You recently emailed Sverre about a problem and there was a great solution? Post a summary here!
- Over a year later (22/11/16) it was empty
- Now it's not

#### (Anna Sippel, Long Wang)



## **Snapshot modelling**

#### Finding a model to fit the observations now

- King models
  - Multimass variants
- Woolley, Wilson, LIMEPY , f<sup>(v)</sup> models (de Vita+ 2016)
- Rotating and anisotropic models

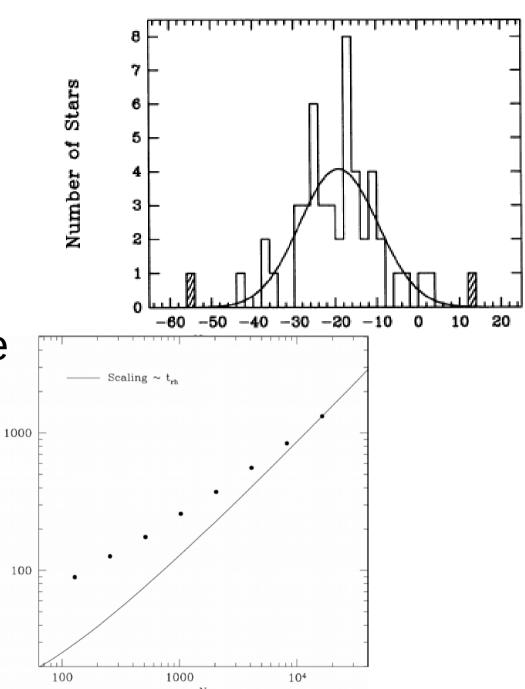
http://www.cosmic-lab.eu/Cosmic-Lab/Talks\_PDF\_files/Varri.pdf

- Jeans models
- Schwarzschild models
- Tidally self-consistent models
  - Only these models include the tidal field inside the cluster
  - These models are still deficient

#### **Potential escapers**

- Stars *inside* the tidal radius but *above* the energy of escape
- ~5-10% of stars in full-size star clusters (based on scaling of N-body models)
- Excluded in all the usual models
- Large effect on velocity dispersion profile

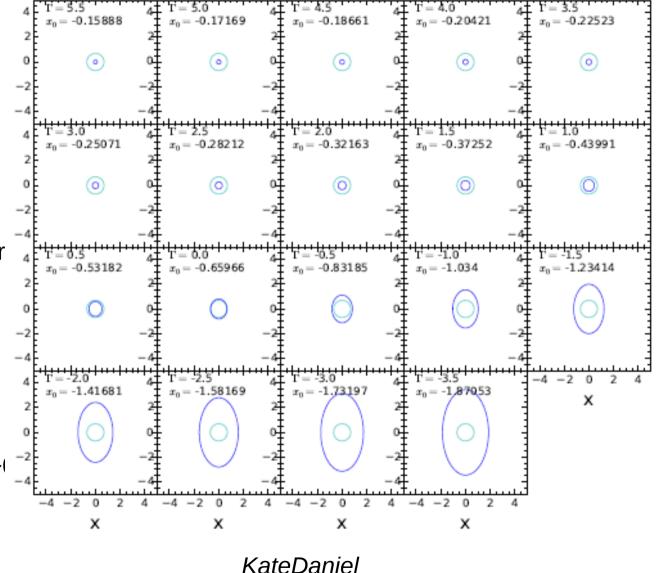



#### Other effects of potential escapers

Half-mass time [Nbody]

- Canonballs
  - Individual I.o.s.

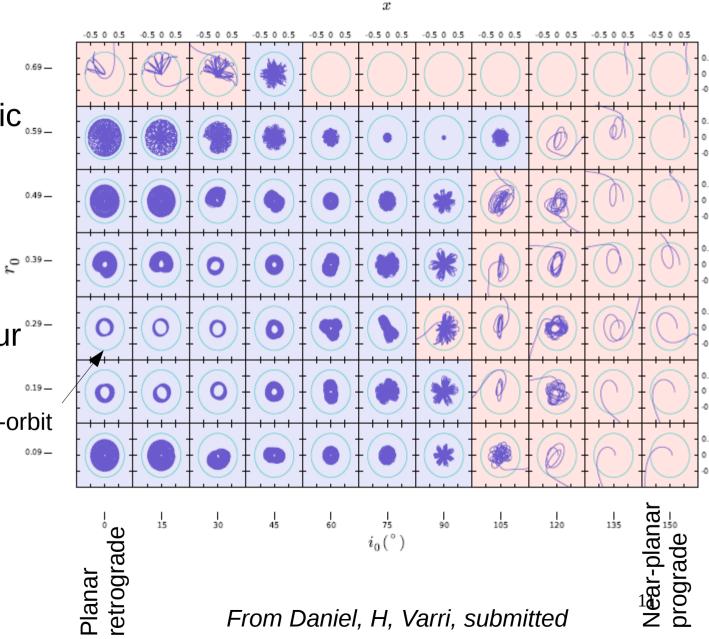
velocities in 47 Tuc


- Up to  $4\sigma$
- (Meylan+1991)
- Scaling of the lifetime
  - (Baumgardt 2001)



9

## f-orbits (Hénon 1970)


- Use a rotating frame to study motions of stars in a point-mass cluster potential
- Energy  $E_R$  (like Jacobi integral  $\Gamma$ ) is conserved
- There are stable periodic orbits
  - At low E<sub>R</sub> these are small near
     Keplerian orbits, inside tidal
     radius (top left)
  - At large E<sub>R</sub> these are nearly epicycles (bottom right)
  - Between Jacobi energy and ~
     these remain inside the tidal radius
- Examples of (stable) potential escapers



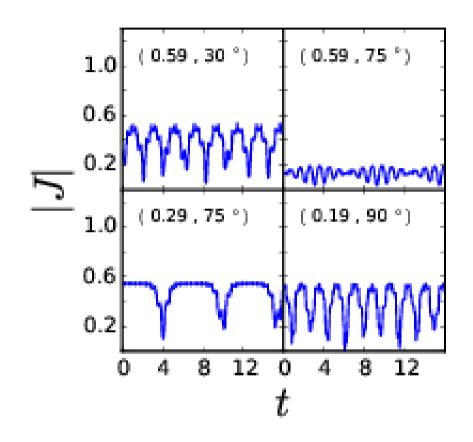
### Some 3-dimensional orbits at $\Gamma = 3$

- Many orbits remain

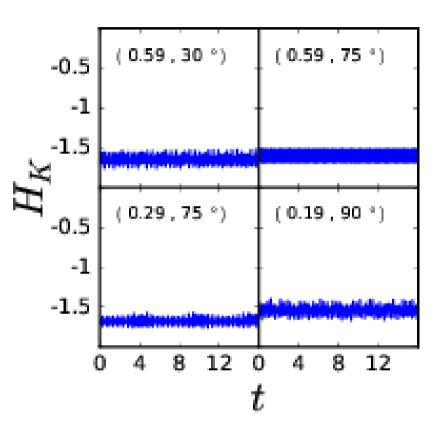
   inside tidal radius
   for at least 16 galactic
   orbits (blue)
- Mostly retrograde
- High-inclination
   orbits show behaviour
   like Lidov-Kozai
   *-f*-orbit
   oscillations



## The distribution of non-escapers


- Aim to construct a model which includes a population of non-escapers
- By Jeans' Theorem, we attempt to specify this in terms of integrals (constants, invariants) of the motion, to give an equilibrium distribution
- $\Gamma$  is an integral
- Equations of motion are exactly those of Lidov-Kozai theory in quadrupole approximation
- Approximate integrals of LK theory:
  - $<H_{\kappa}>$ , i.e. Kepler energy averaged

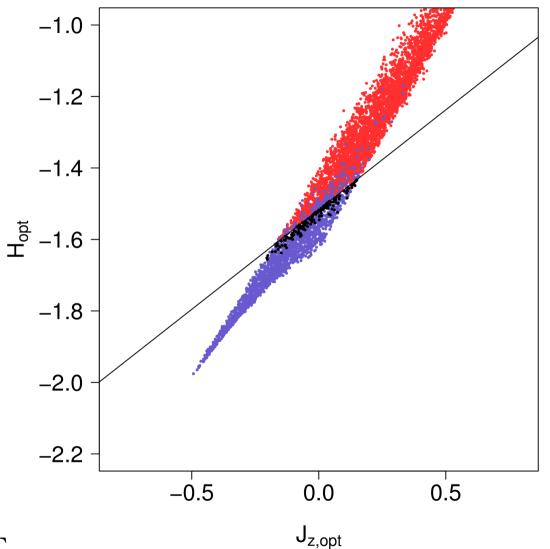
over the Kepler motion


- <J<sub>z</sub>>, i.e. *z*-component of angular momentum, averaged over Kepler and Galactic motions
- To evaluate these from initial conditions we correct for oscillatory terms using first-order perturbation theory

$$\begin{aligned} \ddot{x}_R &= 2\dot{y}_R + 3x_R - \frac{x_R}{r_R^3}, \\ \ddot{y}_R &= -2\dot{x}_R - \frac{y_R}{r_R^3} \\ \ddot{z}_R &= -z_R - \frac{z_R}{r_R^3}. \end{aligned}$$

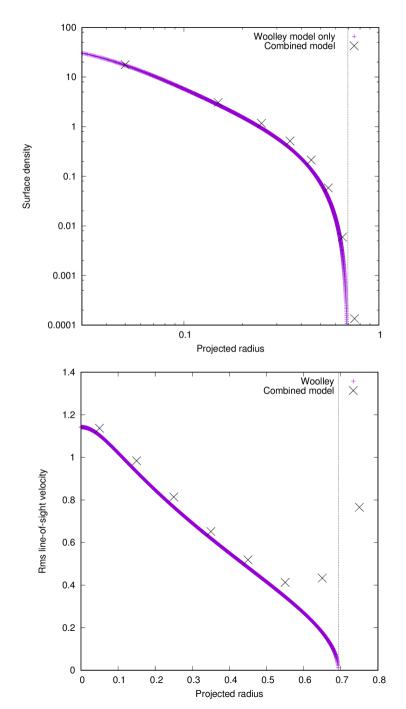
#### Numerical illustration




• Not an integral of LK theory



- AverageH $_{\rm k}$  is an integral
- Mainly high-frequency oscillations


#### Escapers and non-escapers

- Example  $\Gamma = 3$
- "Generalised Lindblad diagram"
- Red/black: escapers
- Blue: non-escapers
- Choose a straight line to minimimise number of misclassified points
- repeat for several discrete values of  $\Gamma$
- interpolate for other values of  $\Gamma$



#### **Combined model**

- Woolley model,  $W_o = 7$ 
  - Distribution function
     Aexp(-j<sup>2</sup>E) below Jacobi energy
- Non-escaper population
  - Distribution function
     Aexp(-j<sup>2</sup>E<sub>R</sub>) above Jacobi energy
     with removal of escapers
  - About 14% of total



#### Take-home messages

- Don't forget the wiki
- Don't forget potential escapers

With thanks to

- coauthors Kate Daniel and Anna Lisa Varri
- Pascale Garaud and ISIMA
- authors of all N-body codes