Dynamics of a stellar disc around an SMBH

Ladislav Šubr \& Jaroslav Haas
Astronomical institute, Charles University in Prage

The stage

- numerous population (≈ 200) of young ($\lesssim 6 \mathrm{Myr}$) massive stars within $\lesssim 0.5 \mathrm{pc}$ from the SMBH ; several tens of them form a well defined disc (Levin \& Beloborodov 2003)
- several tens of B-type stars within 0.04 pc on randomly oriented and highly eccentric orbits
- young stars embedded in a roughly spherical cluster of late-type stars
- properties of the numerous population of young stars in the Galactic centre indicate non-standard star formation process.
- hypothesis of fragmentation of gaseous disc apparently fails to explain origin of stars outside the stellar disc (including the S-stars)
- ... and, at the same time it motivates study of dynamical evolution of such flattened stellar structures per se

Kozai-Lidov oscillations

Broken spherical symmetry \rightarrow angular momentum is not an integral of motion \rightarrow
oscillations of eccentricity and inclination
(Kozai 1962, Lidov 1962)

Šubr et al. 2009

Octupole level of the Kozai-Lidov approximation

Higher order expansion of perturbing potential - applies in particular when axial symmetry of the perturbing potential is lost. (see e.g. Katz et al. 2011, Lithwick \& Naoz 2011, Li et al. 2014)

- Secular evolution still possible when the perturbing potential is sufficiently weak
- no conservation of any component of angular momentum \Rightarrow more degrees of freedom
- adiabatic change of Kozai-Lidov 'integral', $c \equiv \sqrt{1-e^{2}} \cos i$ leads to classical Kozai-Lidov oscillations modulated on long time-scale.

Possible application to the Galactic centre: initially eccentric disc of young stars as a source of perturbing potential influencing dynamics of its individual members.

N-body model description

- SMBH treated either as a masisve particle, or fixed Keplerian potential
- disc of 2000 stars on Keplerian orbits around the SMBH
\diamond semi-major axes in $\langle 0.04 \mathrm{pc}, 0.4 \mathrm{pc}\rangle$
\diamond eccentricity gradient: $e=0$ at the inner edge $\rightarrow e=0.9$ at the outer one
\diamond common direction of eccentricity vectors (nested ellipses)
\diamond half-opening angle of 2°
\diamond either zero or 100% binary fraction
- direct N-body integrator NBODY6 (with some tunings)
- see Haas \& Šubr 2016 and Šubr \& Haas 2016 for more details

‘Eccentric’ Kozai-Lidov oscillations

- flips from co-rotation to counter-rotation and vice versa
- extreme values of eccentricity during the flips

‘Eccentric’ Kozai-Lidov oscillations

- flips from co-rotation to counter-rotation and vice versa
- extreme values of eccentricity during the flips
- c.f. Fgr 2 in Li et al. 2014, ApJ, 785, 116

Mean inclination growth

- accelerated growth if $i_{r m s}$ due to (relatively coherent) octupole Kozai-Lidov oscillations
- due to geometry of flipping orbits, the large value of $i_{r m s}$ does not correspond to large geometrical thikness of the disc

Observational intermezzo - hypervelocity stars

- B-stars observed in the Galactic halo with heliocentric velocity $300 \mathrm{~km} \mathrm{~s}^{-1} \lesssim v \lesssim 1000 \mathrm{~km} \mathrm{~s}^{-1}$ (e.g. Brown et al. 2014)
- about 20 known so far (but large list of possible candidates exists; Vickers et al. 2015)
- velocity vectors indicate Galactocentric origin
- statistically significant spatial anisotropy (incomplete sky syrvey, however)
- predicted already by Hills in 1988 as a consequence of tidal break-up of binary stars passing close to the SMBH in the Galactic centre; their initial companions remain tightly bound to the SMBH \rightarrow unique hypothesis for origin of the HVSs and the S -stars
- the question: Where do the binaries come from?

HVSs formed in the N -body model

- strong (and non-trivial) dependence on binary semi-major axis distribution and shape of the Galactic potential (our default model - Kenyon et al. 2008)

Spatial anisotropy of the HVSs

- strong anisotropy - both lattitude and longitude

S-stars in the N -body model

- All stars in the disc and the S-stars

S-star \equiv what remains after the Hills break-up

- Observed S-stars below $1^{\prime \prime}$ (Gillessen et al. 2009; Gillessen et al. 2016)

Summary

- 'disc scenario' of formation of stars in galactic nuclei implies resonant dynamics (not only of the young stars!)
- secular dynamics depends on many parameters of the system
- observational data really great(!), but still leave us with only few stars with well determined orbits (including the HVSs)
- need to search for features characteristic for individual dynamical processes
\diamond positive example: anisotropic distribution of HVSs
\diamond not so positive example: distribution of orbital elements of the S -stars

