Black hole feeding rates in post-merger galaxies

Eugene Vasiliev

Oxford University

Kirill Lezhnin

Princeton University

Stellar aggregates, Bad Honnef, 9 December 2016

Tidal disruptions: observational status

- Occur in quiescent galactic nuclei;
- Observed as X-ray, UV and optical transients;
- Have distinct lightcurves and spectra;
- A few dozen of events registered so far

[see reviews by Komossa (1505.01093), Kochanek (1601.06787)].

Tidal disruptions and the loss-cone theory

Tidal disruption radius:
$$r_t \simeq \left(rac{M_ullet}{M_\star}
ight)^{1/3} R_\star.$$

Direct capture occurs when $r_t \leq 4r_{\rm schw} = 8GM_{\bullet}/c^2$.

Critical angular momentum: $L_t \equiv \sqrt{2GM_{\bullet}r_t}$.

The classical loss-cone theory

Distribution function of stars: $\mathcal{N}(E, L, t)$.

Two-body relaxation leads to the diffusion of stars in the phase space;

The Fokker–Planck equation for the diffusion in angular momentum:

$$\frac{\partial \mathcal{N}(E,L,t)}{\partial t} = \frac{\partial}{\partial L} \left(\mathcal{D}_1(L) \, \mathcal{N}(E,L,t) + \mathcal{D}_2(L) \, \frac{\partial \mathcal{N}(E,L,t)}{\partial L} \right)$$

Steady-state profile: $\mathcal{N}(E, L) \propto A(E) + B(E) \ln(L/L_t)$ and the corresponding flux into the black hole $\mathcal{F}(E)$.

Analytic time-dependent solution in terms of Bessel series [Milosavljević & Merritt 2003, Lezhnin & Vasiliev 2015].

Steady-state tidal disruption rates

- Take a surface brightness profile of a galaxy nucleus Σ(R);
- Assume a black hole mass M_{\bullet} and mass-to-light ratio Υ ;
- Deproject Σ to obtain the density profile ρ(r);
- Compute the isotropic distribution function in energy $\mathcal{N}(E)$;
- Compute the diffusion coefficients D(E);
- Integrate the steady-state flux to obtain $N_{\text{TDE}} = \int \mathcal{F}(E) dE$.

Theoretical predictions are higher than the observed rates!

Galaxy mergers and binary supermassive black holes

- Binary SBH naturally created in galaxy mergers;
- The two SBHs spiral in and eventually coalesce due to gravitation-wave emission;
- On their way to coalescence, they eject stars from the galactic nucleus (the slingshot effect);
- As a result, a gap in the angular momentum distribution is formed;
- The flux of stars into a residual single SBH is suppressed until this gap is refilled.

WFPC2 captures a SMBH binary kicking stars out of the bulge [image credit: Paolo Bonfini]

A gap in stellar distribution at low angular momentum

The gap takes a while to refill

Ratio between time-dependent (suppressed) and stationary capture rates for a sample of nearby galaxies with estimated black hole masses.

The capture rate is still suppressed after 10 Gyr for galactic nuclei with $M_{\bullet} \gtrsim 10^{7.5} M_{\odot}$.

Non-spherical galactic nuclei

offset Dec. [pc]

[NSC catalog of Georgiev & Böker 2014]

[Milky Way NSC, Schödel+ 2014]

Loss cone in non-spherical stellar systems

Angular momentum L of any star is not conserved, but experiences oscillations due to torques from non-spherical distribution of stars.

Many more stars can attain low L and enter the loss cone.

The gap is much less prominent in non-spherical systems

This is the reason that the "Final-parsec problem" does not exist [Vasiliev+ 2015, Gualandris+ 2016].

The Monte Carlo method for non-spherical systems

- Galactic nuclei have N_⋆ ≫ 10⁶ − not amenable to direct N-body simulations.
- Difficult or impossible to properly scale the simulations with affordable N in the presence of both collisional (N-dependent) and collisionless (N-independent) processes.
- Conventional Fokker–Planck or Monte Carlo methods restricted to spherical symmetry.

Solution:

use the Monte Carlo approach, but without orbit-averaging.

The Monte Carlo method for non-spherical systems

• Gravitational potential:

spherical-harmonic expansion of an arbitrary density profile (similar to the self-consistent field method of Hernquist & Ostriker 1992).

Orbit integration:

adaptive-timestep, all particles move independently in the global potential.

Two-body relaxation:

local diffusion coefficients in velocity $\langle \Delta v_{\parallel}^2 \rangle$, $\langle \Delta v_{\perp}^2 \rangle (r, v)$ computed from the smooth distribution function f(E) (spherical isotropic background), with adjustable amplitude (assigned independently of N); perturbations to velocity applied after each timestep.

Massive black hole(s):

capture of stars with $r < r_t$, three-body scattering by a massive BH binary.

Temporal smoothing:

potential and diffusion coefficients updated after an interval of time $\gg T_{dyn}$, but $\ll T_{rel} \implies$ reduced parasitic noise (+trajectory oversampling).

[Moki Cherry, "Raga", 1970s]

Implementations of the Monte Carlo method

Name	Reference	relaxation treatment	timestep	$1:1^{1}$	BH ²	remarks
Princeton	Spitzer&Hart(1971), Spitzer&Thuan(1972)	local dif.coefs. in velocity, Maxwellian background $f(r, v)$	$\propto T_{dyn}$	-	-	
Cornell	Marchant&Shapiro (1980)	dif.coef. in E , L , self-consistent background $f(E)$	indiv., <i>T_{dyn}</i>	-	+	particle cloning
-	Hopman (2009)	same		-	+	stellar binaries
Hénon	Hénon(1971)	local pairwise interaction, self- consistent bkgr. $f(r, v_r, v_t)$	$\propto T_{rel}$	-	-	
-	Stodołkiewicz(1982) Stodołkiewicz(1986)	Hénon's	block, $T_{rel}(r)$	-	-	mass spectrum, disc shocks binaries, stellar evolution
Mocca	Giersz(1998) Hypki&Giersz(2013)	same same	same same	+ +	_	3-body scattering (analyt.) single/binary stellar evol., few-body scattering (num.)
Смс	Joshi+(2000) Umbreit+(2012), Pattabiraman+(2013)	same	$\propto T_{rel}(r=0)$ (shared)	+ +	- +	partially parallelized fewbody interaction, single/ binary stellar evol., GPU
${\rm Me}({\rm ssy})^2$	Freitag&Benz(2002)	same	indiv. $\propto T_{\it rel}$	_	+	cloning, SPH physical collis.
-	Sollima&Mastrobuono- Battisti(2014)	same		-	-	realistic tidal field
Raga	Vasiliev(2015)	local dif.coef. in velocity, self- consistent background $f(E)$	indiv. $\propto T_{dyn}$	-	+	arbitrary geometry

 $^1 \ensuremath{\mathsf{O}}\xspace{\mathsf{ne}}\xspace{\mathsfne}}\xspace{\mathsfne}\xspace{\mathsfne}}\xspace{\mathsfne}\xspace{\mathsfne}}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}}\xspace{\mathsfne}\xspace{\mathsfne}}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\$

 $^{2}\ensuremath{\mathsf{Massive}}$ black hole in the center, loss-cone effects

Features of the Rugu Monte Carlo code

- Single-mass systems;
- No binaries;
- No stellar evolution;
- No few-body interactions;
- + Central black hole(s);
- + Non-spherical systems;

VS.

Results: capture rates in post-merger galaxies

Summary

- Tidal disruptions probe the demographics of massive black holes.
- Galaxy mergers lead to non-spherical remnant shapes and a gap in the angular-momentum distribution of stars.
- The increase in tidal disruption rates due to non-spherical shape is more important than the suppression due to the gap.
- The rates are higher than simple spherical steady-state estimates by a factor 2 ÷ 10.
- Discrepancy with observationally inferred rates still exists!

References:

E.Vasiliev, CQG, 31, 244002, 2014. K.Lezhnin & E.Vasiliev, ApJL, 808, 5, 2015. K.Lezhnin & E.Vasiliev, ApJ, 831, 84, 2016.

The Raga code is available at http://td.lpi.ru/~eugvas/raga