Black hole feeding rates in post-merger galaxies

Eugene Vasiliev
Oxford University

Kirill Lezhnin
Princeton University

Stellar aggregates, Bad Honnef, 9 December 2016

Tidal disruptions: observational status

- Occur in quiescent galactic nuclei;
- Observed as X-ray, UV and optical transients;
- Have distinct lightcurves and spectra;
- A few dozen of events registered so far [see reviews by Komossa (1505.01093), Kochanek (1601.06787)].

[from van Velzen+ 2016]

Tidal disruptions and the loss-cone theory

Tidal disruption radius: $r_{t} \simeq\left(\frac{M_{\bullet}}{M_{\star}}\right)^{1 / 3} R_{\star}$.
Direct capture occurs when $r_{t} \leq 4 r_{\text {schw }}=8 G M_{\bullet} / c^{2}$.
Critical angular momentum: $L_{t} \equiv \sqrt{2 G M_{\bullet} r_{t}}$.

The classical loss-cone theory

Distribution function of stars: $\mathcal{N}(E, L, t)$.
Two-body relaxation leads to the diffusion of stars in the phase space;
The Fokker-Planck equation for the diffusion in angular momentum:

$$
\frac{\partial \mathcal{N}(E, L, t)}{\partial t}=\frac{\partial}{\partial L}\left(\mathcal{D}_{1}(L) \mathcal{N}(E, L, t)+\mathcal{D}_{2}(L) \frac{\partial \mathcal{N}(E, L, t)}{\partial L}\right)
$$

Steady-state profile: $\mathcal{N}(E, L) \propto A(E)+B(E) \ln \left(L / L_{t}\right)$ and the corresponding flux into the black hole $\mathcal{F}(E)$.

Analytic time-dependent solution in terms of Bessel series
[Milosavljević \& Merritt 2003, Lezhnin \& Vasiliev 2015].

Steady-state tidal disruption rates

- Take a surface brightness profile of a galaxy nucleus $\Sigma(R)$;
- Assume a black hole mass M• and mass-to-light ratio Υ;
- Deproject Σ to obtain the density profile $\rho(r)$;
- Compute the isotropic distribution function in energy $\mathcal{N}(E)$;
- Compute the diffusion coefficients $\mathcal{D}(E)$;
- Integrate the steady-state flux to obtain $N_{\text {TDE }}=\int \mathcal{F}(E) d E$.

Theoretical predictions are higher than the observed rates!

Galaxy mergers and binary supermassive black holes

- Binary SBH naturally created in galaxy mergers;
- The two SBHs spiral in and eventually coalesce due to gravitation-wave emission;
- On their way to coalescence, they eject stars from the galactic nucleus
 (the slingshot effect);
- As a result, a gap in the angular momentum distribution is formed;
- The flux of stars into a residual single SBH is suppressed until this gap is refilled.

A gap in stellar distribution at low angular momentum

The gap takes a while to refill

Ratio between time-dependent (suppressed) and stationary capture rates for a sample of nearby galaxies with estimated black hole masses.

The capture rate is still suppressed after 10 Gyr for galactic nuclei with $M_{\bullet} \gtrsim 10^{7.5} M_{\odot}$.

Non-spherical galactic nuclei

[NSC catalog of Georgiev \& Böker 2014]

Loss cone in non-spherical stellar systems

Angular momentum L of any star is not conserved, but experiences oscillations due to torques from non-spherical distribution of stars.

Many more stars can attain low L and enter the loss cone.

time

The gap is much less prominent in non-spherical systems

This is the reason that the "Final-parsec problem" does not exist
[Vasiliev+ 2015, Gualandris+ 2016].

The Monte Carlo method for non-spherical systems

- Galactic nuclei have $N_{\star} \gg 10^{6}$ - not amenable to direct N-body simulations.
- Difficult or impossible to properly scale the simulations with affordable N in the presence of both collisional (N-dependent) and collisionless (N-independent) processes.
- Conventional Fokker-Planck or Monte Carlo methods restricted to spherical symmetry.
- Solution:
use the Monte Carlo approach, but without orbit-averaging.

The Monte Carlo method for non-spherical systems

- Gravitational potential:
spherical-harmonic expansion of an arbitrary density profile (similar to the self-consistent field method of Hernquist \& Ostriker 1992).
- Orbit integration: adaptive-timestep, all particles move independently in the global potential.
- Two-body relaxation: local diffusion coefficients in velocity $\left\langle\Delta v_{\|}^{2}\right\rangle,\left\langle\Delta v_{\perp}^{2}\right\rangle(r, v)$ computed from the smooth distribution function $f(E)$ (spherical isotropic background), with adjustable amplitude (assigned independently of N); perturbations to velocity applied after each timestep.
- Massive black hole(s): capture of stars with $r<r_{\mathrm{t}}$, three-body scattering by a massive BH binary.
- Temporal smoothing: potential and diffusion coefficients updated after an interval of time $\gg T_{\text {dyn }}$, but $\ll T_{\text {rel }} \Longrightarrow$ reduced parasitic noise (+trajectory oversampling).

रवप्व
 - relaxation in any geometry

[Moki Cherry, "Raga", 1970s]

Implementations of the Monte Carlo method

Name

Princeton	Spitzer\&Hart(1971), Spitzer\&Thuan(1972)	local dif.coefs. in velocity, Maxwellian background $f(r, v)$	$\propto T_{\text {dyn }}$	-	-	
Cornell	Marchant\&Shapiro (1980)	dif.coef. in E, L, self-consistent background $f(E)$	indiv., $T_{\text {dyn }}$	-	$+$	particle cloning
-	Hopman (2009)	same		-	$+$	stellar binaries
Hénon	Hénon(1971)	local pairwise interaction, selfconsistent bkgr. $f\left(r, v_{r}, v_{t}\right)$	$\propto T_{\text {rel }}$	-	-	
-	Stodołkiewicz(1982) Stodołkiewicz(1986)	Hénon's	block, $T_{\text {rel }}(r)$	-	-	mass spectrum, disc shocks binaries, stellar evolution
Mocca	Giersz(1998) Hypki\&Giersz(2013)	same same	same same	$\begin{aligned} & + \\ & + \end{aligned}$	-	3-body scattering (analyt.) single/binary stellar evol., few-body scattering (num.)
Cmc	$\begin{aligned} & \text { Joshi }+(2000) \\ & \text { Umbreit }+(2012) \text {, } \\ & \text { Pattabiraman }+(2013) \end{aligned}$	same	$\underset{\substack{\propto T_{r e l}(r=0) \\(\text { shared) })}}{ }$	$\begin{aligned} & + \\ & + \end{aligned}$	-	partially parallelized fewbody interaction, single/ binary stellar evol., GPU
$\mathrm{ME}(\mathrm{SSY})^{2}$	Freitag\&Benz(2002)	same	indiv. $\propto T_{\text {rel }}$	-	+	cloning, SPH physical collis.
-	Sollima\&MastrobuonoBattisti(2014)	same		-	-	realistic tidal field
Raga	Vasiliev(2015)	Tocal dif.coef. in velocity, selfconsistent background $f(E)$	indiv. $\propto T_{\text {dy }}$	-	$+$	arbitrary geometry

Features of the रवप्रव Monte Carlo code

- Single-mass systems;
- No binaries;
- No stellar evolution;
- No few-body interactions;
+ Central black hole(s);
+ Non-spherical systems;

Results: capture rates in post-merger galaxies

Summary

- Tidal disruptions probe the demographics of massive black holes.
- Galaxy mergers lead to non-spherical remnant shapes and a gap in the angular-momentum distribution of stars.
- The increase in tidal disruption rates due to non-spherical shape is more important than the suppression due to the gap.
- The rates are higher than simple spherical steady-state estimates by a factor $2 \div 10$.
- Discrepancy with observationally inferred rates still exists!

References:

E.Vasiliev, CQG, 31, 244002, 2014.
K.Lezhnin \& E.Vasiliev, ApJL, 808, 5, 2015.
K.Lezhnin \& E.Vasiliev, ApJ, 831, 84, 2016.

The Raga code is available at http://td.lpi.ru/~eugvas/raga

