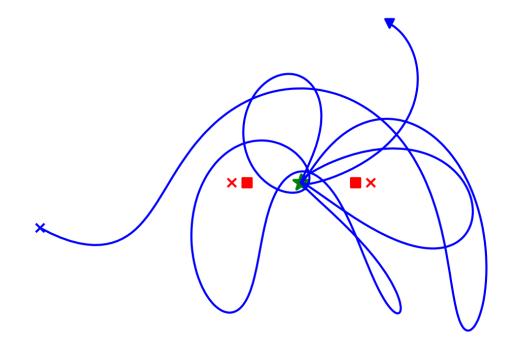
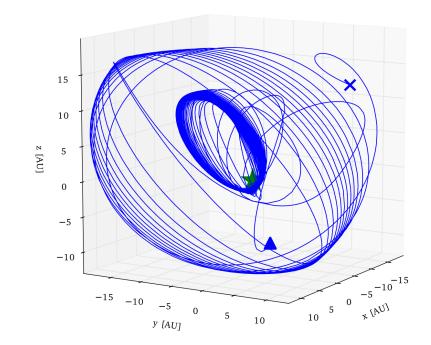
Dynamics of planets and low-mass stars in the Galactic centre: implications for G2



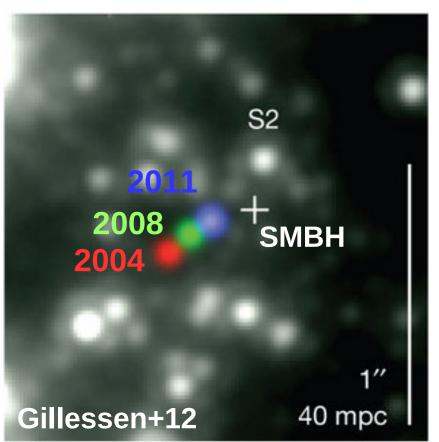


Alessandro A. Trani Friday 9 December 2016

Collaborators: Michela Mapelli Mario Spera Simon Grimm

The Galactic Centre: The G2 cloud

- Faint, dusty object visible in $\text{Br}\gamma$ line and L' band
- Radial orbit: $e\simeq 0.98$
- Very close pericenter passage: $p\simeq 200\,{\rm AU}$
- Same inclination of the CW disk



Debated origin

Compatible with planetary embryo \ low-mass star undergoing photoevaporation

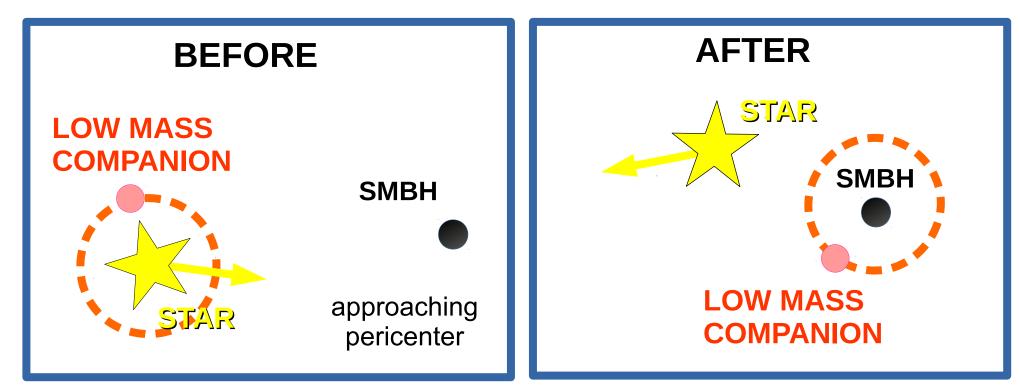
(Murray&Loeb 2012, Mapelli&Ripamonti 2015)

How planets/low mass stars get into such radial orbit?

Planets/low mass stars in the Galactic Center: dynamics

Stars in the CW disk might host planets and protoplanetary disk (Ginsburg+12, Zubovas+12, Nayakshin+12, Cadez+08)

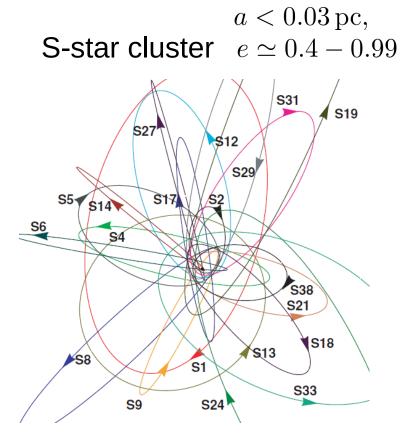
The SMBH tidal field may capture planets/low-mass stars



Planets/low mass stars in the Galactic Center: dynamics

Planets/low mass stars source?

 $a > 0.03 \,\mathrm{pc},$ CW disk $e \simeq 0.3$



Gillessen+2009a

Yelda+2014

Clockwise disk 3-body simulations

3-body simulations of SMBH-star-planet hierarchical systems

Mikkola's algorithmic regularization (MAR, Mikkola & Tanikawa 1999)

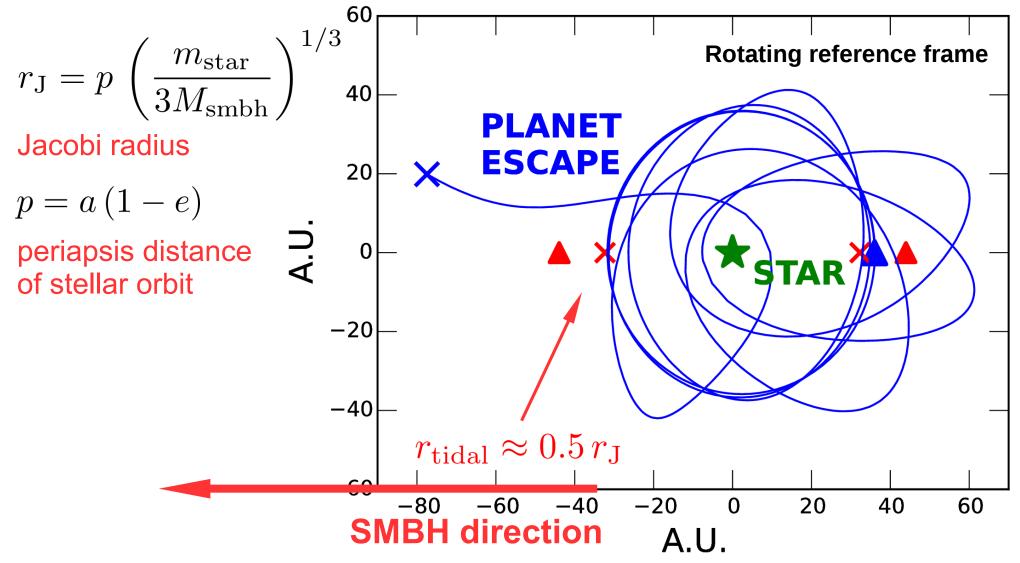
• Masses: $M_{\text{SMBH}} = 4.3 \times 10^6 \,\text{M}_{\odot}$ • Masses: $m_{\text{star}} = 5 \,\text{M}_{\odot}$ $m_{\text{planet}} = 10 \,\text{M}_{\text{Jup}}$

- Star orbit: modelled following the properties of the CW disk inner edge (Yelda+14, Do+13)
- Planet orbit: circular, with $10 \,\mathrm{AU} < a_{\mathrm{planet}} < 100 \,\mathrm{AU}$
- 4 sets of 10000 realizations:
- Set A: coplanar, prograde orbits
- Set B: coplanar, retrograde orbits

- Set C: inclined, prograde orbits
- Set D: inclined, retrograde orbits

Clockwise disk 3-body simulations

3-body simulations of SMBH-star-planet with regularized code

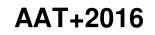


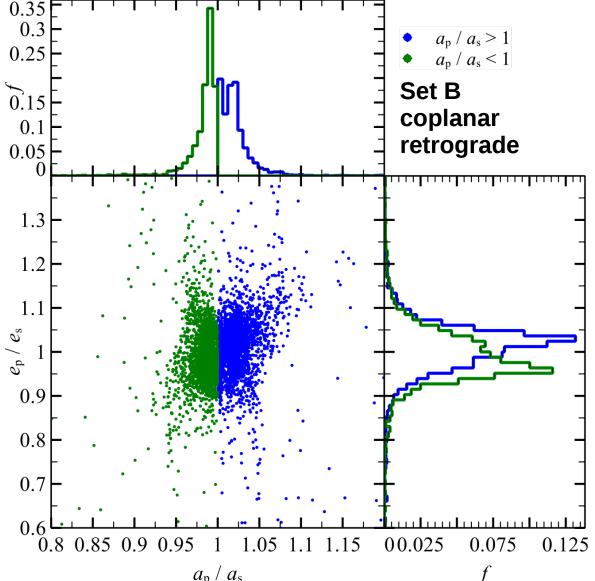
0.25 0.2 $a_{\rm p} / a_{\rm s} > 1$ $a_{\rm p} / a_{\rm s} < 1$ 0.15 ∽ 0.1 Set A coplanar 0.05 prograde () 1.3 1.2 1.1 $e_{ m p}$ / $e_{ m s}$ 0.9 0.8 0.7 0.6 0.8 0.85 0.9 0.95 1.15 0.02 0.04 0.06 1 05 0 $a_{\rm p} / a_{\rm s}$

• Planets remain on orbit similar to the one of their parent star

AAT+2016

- Bimodal distribution in normalized semimajor axis: planets never get the same semimajor axis of the parent star
- Looser orbits tend to have higher eccentricity with respect to the parent star orbit, and viceversa

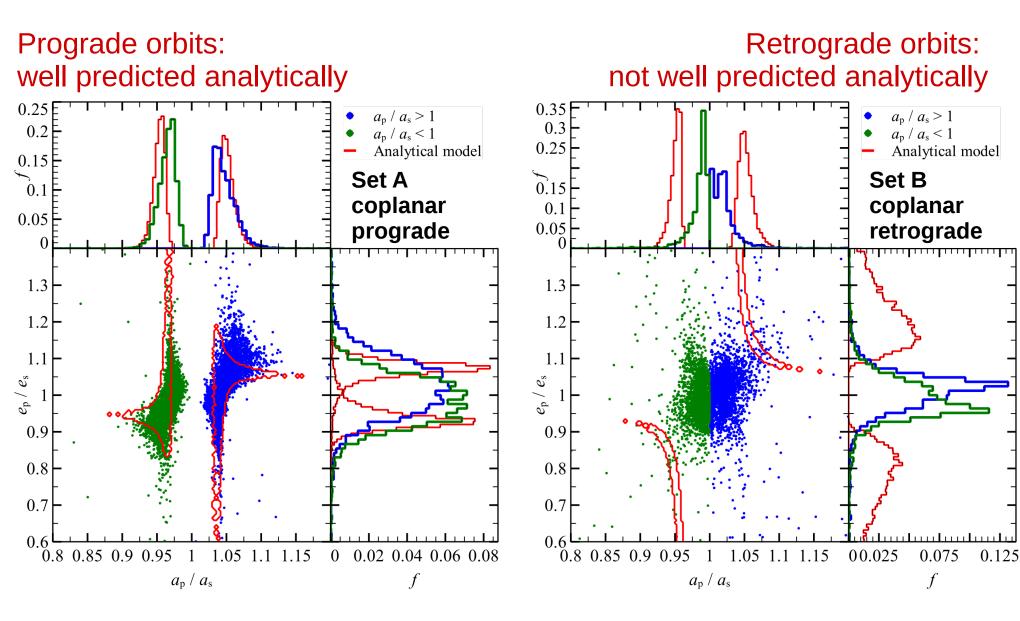




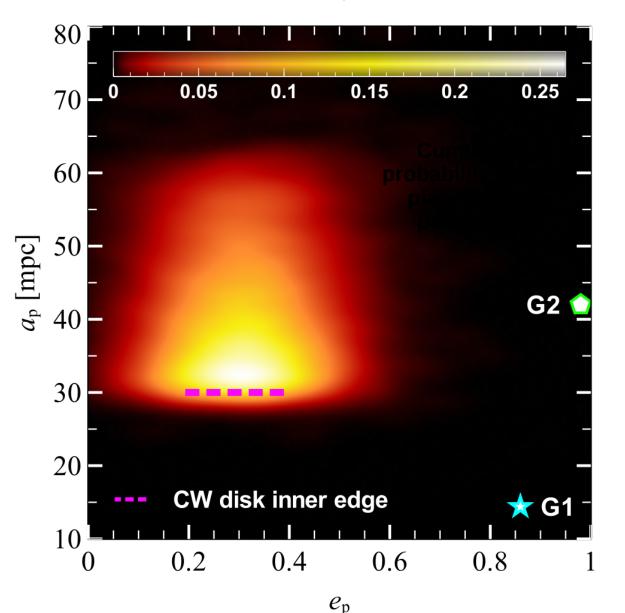
- Planets remain on orbit similar to the one of their parent star
- No bimodal distribution in semimajor axis
- Looser orbits tend to have higher eccentricity with respect to the parent star orbit, and viceversa

Can we predict analytically?

AAT+2016



AAT+2016



Going back to G2 cloud:

is there some planet getting into an orbit around the SMBH similar to the G2 cloud one?

All planets remain in the CW disk

Perturbations from other stars in the disk may bring planets into radial orbits

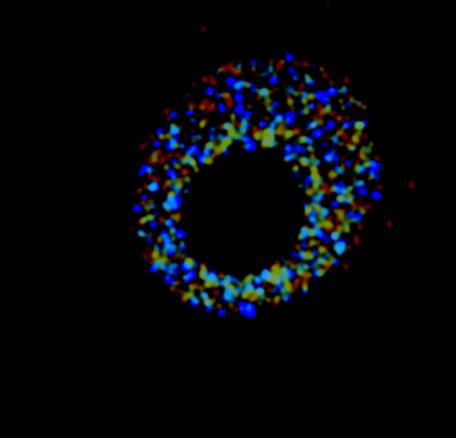
Clockwise disk simulations

- GENGA: hybrid symplectic integrator (Grimm & Stadel 2014)
 - Hamiltonian splitting
 - Runs on GPUs
 - Excellent energy conservation in nearly-Keplerian problems

Stellar disk

Obtained from hydro simulation of an infalling molecular gas cloud (Mapelli+2012)

 + planets/low mass stars as test particles (unbound from the stars) N_{test} := N_{stars}

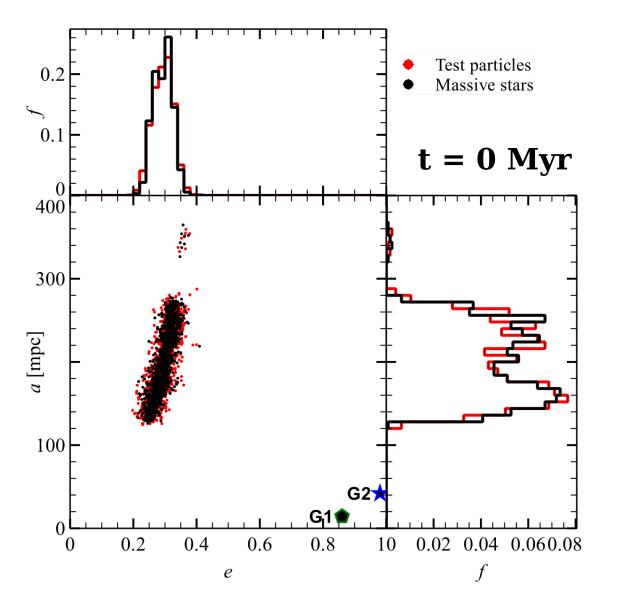


Consistent with observations

(Do+2013, Lu+2013, Yelda+2014) $N \simeq 10^3$

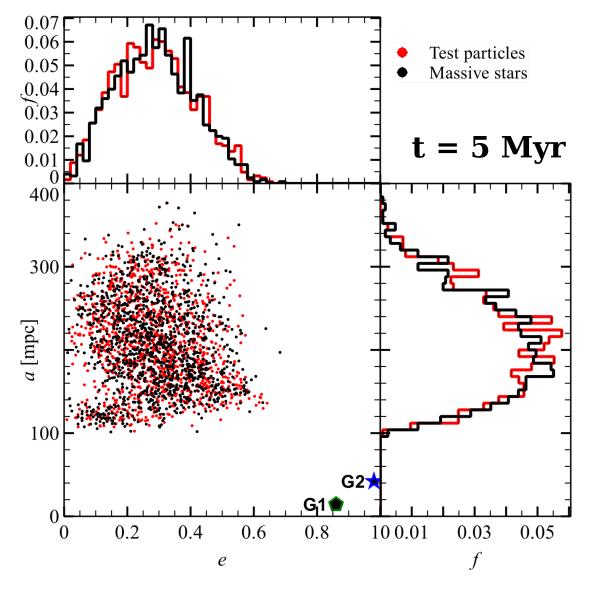
 $M_{\rm tot} = 4.3 \times 10^3 \,\mathrm{M}_{\odot}$ $\mathrm{IMF}(m) \propto m^{-1.5}$ $a \in (0.1, 0.4) \,\mathrm{pc}$ $\langle e \rangle \simeq 0.3$

Clockwise disk simulations: some results



AAT+, in preparation

Clockwise disk simulations: some results



- Both planets and stars diffuse to highly-eccentric orbits
- BUT NOT ENOUGH
- No significant difference between test particles and stars distributions

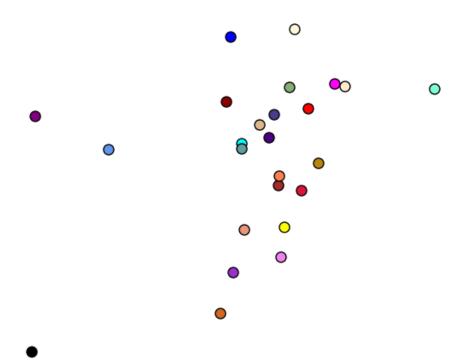
More simulations are coming

AAT+, in preparation

Tidal capture in S-star cluster

What about planets in the S-star cluster?

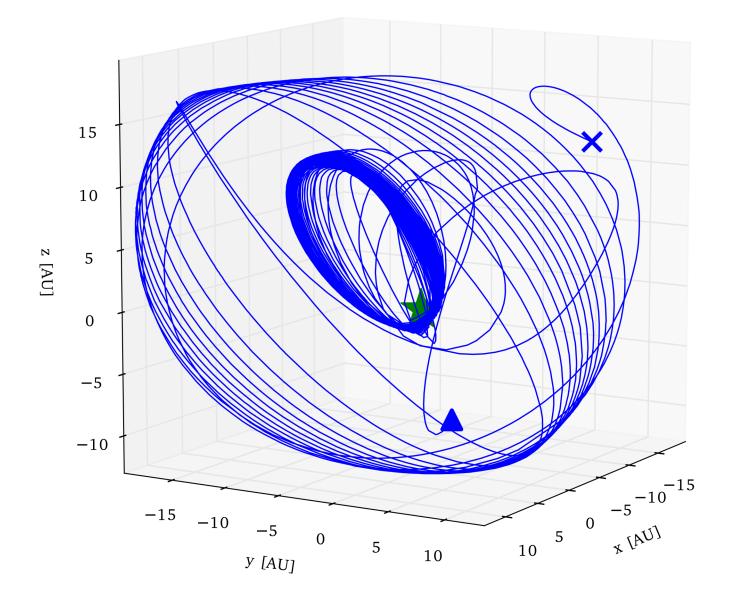
S-stars orbits are more eccentric and tight than CW disk stars:



20000 simulations of 27 S-stars with planets:

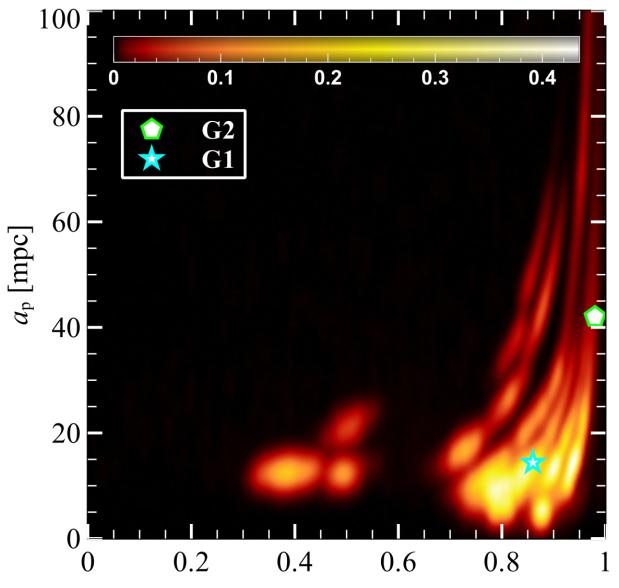
- S-stars orbit parameters taken from observations (Gillessen+09)
- Planet orbits: circular, randomly oriented over the sphere
- Planets semimajor axis: $1-20\,\mathrm{AU}$

Tidal capture in S-star cluster



Tidal capture in S-star cluster: results

AAT+2016



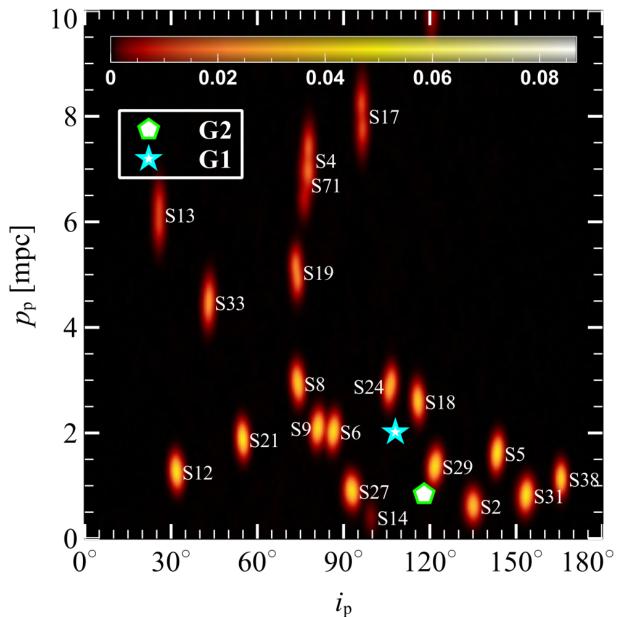
 $e_{\rm p}$

Unbound planets orbital parameters around the SMBH

Semimajor axis and eccentricity are compatible with G1 and G2 cloud...

Tidal capture in S-star cluster: results

AAT+2016



Unbound planets orbital parameters around the SMBH

..orbital orientation is not

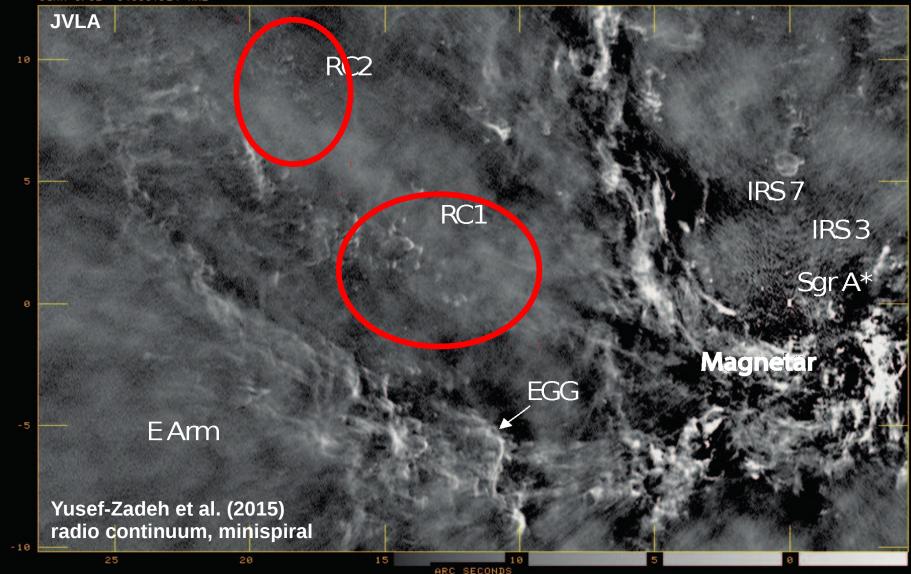
Conclusions

- SMBH tidal field may split low mass objects from stars, either in CW disk or S-stars
- Planetary orbital properties around the SMBH can be predicted with an analytical model in the case of prograde orbits
- CW low-mass objects are not compatible with G2 cloud orbit but:
 - perturbations from other disk stars might bring low-mass objects into highly-eccentric orbits (AAT+, in prep.)
- Eccentricity and semimajor axis of S-stars low-mass objects are compatible with G2 and G1 cloud orbits, but orientation is not

AAT+2016 http://adsabs.harvard.edu/abs/2016ApJ...831...61T

Planets in the Galactic Center: observations

SGRA IPOL 34516.924 MHZ



ARC

Planets in the Galactic Center: dynamics

How to simulate a SMBH-star-planet system?

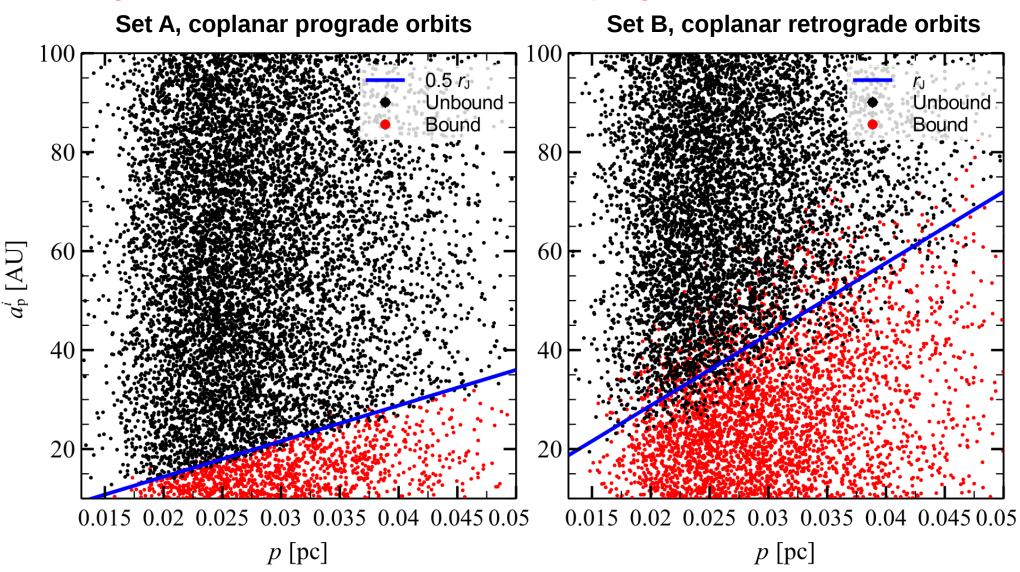
- Short interparticle distances, but gravity has singularity in $r \longrightarrow 0$ Large accelerations lead to too short timestep, halting the integration
- Large mass ratio: $M_{\rm SMBH}/m_{\rm planet} \approx 10^{10}$ Small errors in acceleration lead to huge errors in planet position and velocity

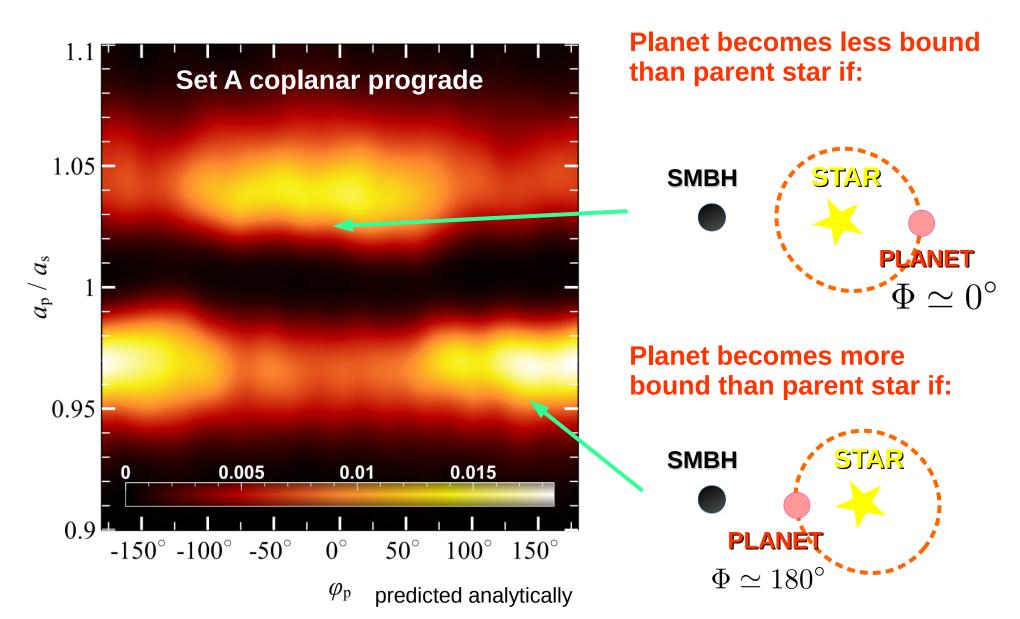
We must employ a regularized algorithm:

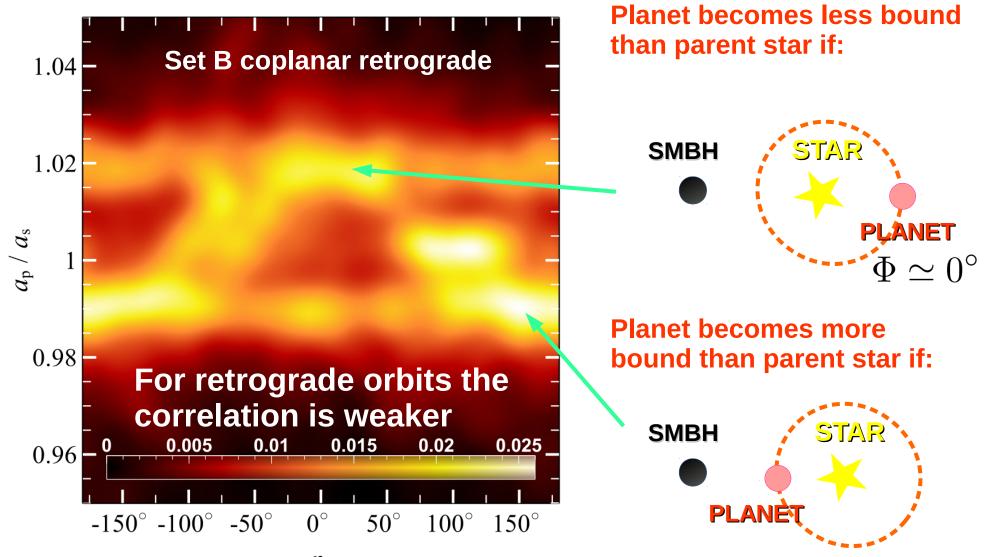
Mikkola's algorithmic regularization (MAR, Mikkola&Tanikawa99)

- Removes the singularity of the potential in $\,r\longrightarrow 0\,$ by means of coordinate transformations
- Uses coordinate transformation, based on interparticle vectors, reducing round-off errors (Mikkola&Aarseth93)

Retrograde orbits are more stable than prograde ones







 $\varphi_{\rm p}$ predicted analytically

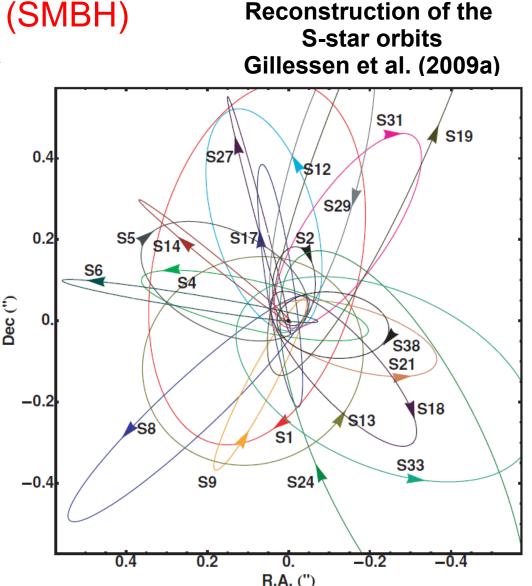
The Galactic Centre: a crowded environment

- The supermassive black hole (SMBH)
 - $M_{\rm BH} = 4.3 \pm 0.5 \times 10^6 \,{\rm M}$

from measurements of the S2 star orbit

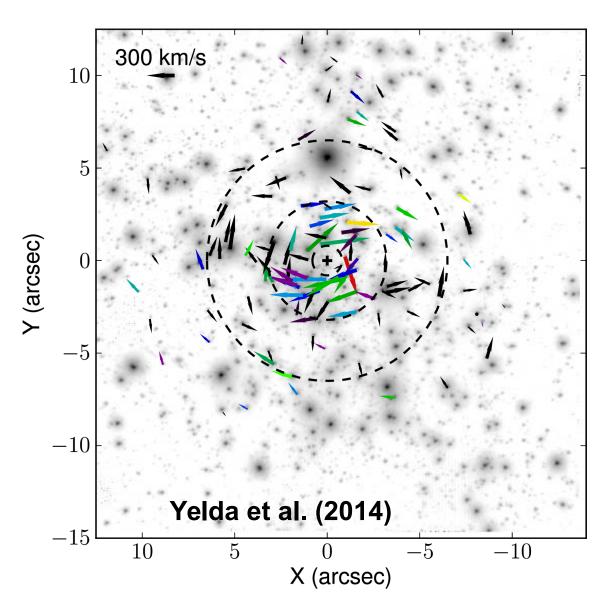
The S-stars

- ~30 stars closest to the SMBH $d_{
 m SMBH} < 0.04\,{
 m pc}$
- B-type stars: $t_{
 m age}\simeq 6-400\,{
 m My}$
- Randomly oriented orbits
- High eccentricity



The Galactic Centre: The clockwise disc

- O and WR stars: $t_{
 m age} \simeq 2.5 6 \, {
 m Myr}$
- Flat mass function: $\propto m^{-1.7\pm0.2}$
- Eccentricity: $\langle e \rangle \simeq 0.3$
- Radial extension $0.05\,\mathrm{pc} < \mathrm{a} < 0.1\,\mathrm{pc}$
- Only 20% of the young stars lie in the disc (Yelda+14)



Planets in the CW disk: simulations

3-body simulations of SMBH-star-planet hierarchical systems

$$\begin{split} M_{\rm SMBH} 4.3 \times 10^{6} \, {\rm M}_{\odot} \\ m_{\rm star} &= 5 \, {\rm M}_{\odot} \\ m_{\rm planet} &= 10 \, {\rm M}_{\rm Jup} \end{split}$$

Star orbit: modelled following the properties of the CW disk (Yelda+14, Do+13)

- $\,$ Semimajor axis: power-law distribution $\,\Gamma=-1.93, range:\, 0.03\,pc < a_{\rm star} < 0.06\,pc$
- > Eccentricity: Gaussian centred in 0.3, with $\sigma = 0.1$

Planet orbit: circular, with $10 \,\mathrm{AU} < a_{\mathrm{planet}} < 100 \,\mathrm{AU}$

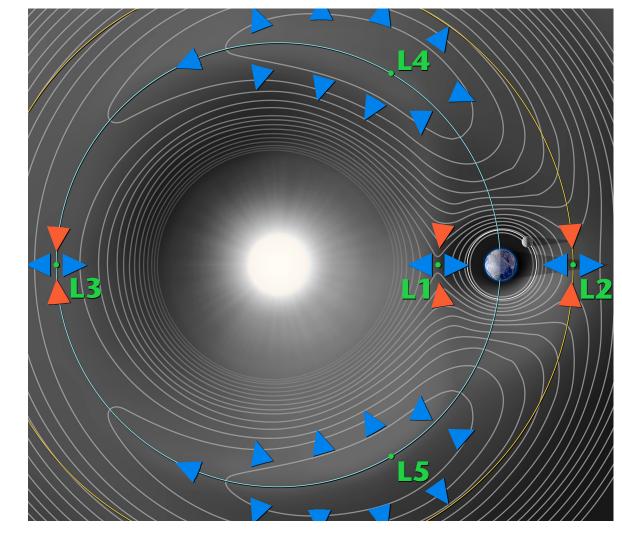
4 sets of 10000 realizations:

- Set A: coplanar, prograde orbits
- Set B: coplanar, retrograde orbits
- > Set C: inclined, prograde orbits $-90^{\circ} < i < 90^{\circ}$, uniformly distributed
- > Set D: inclined, retrograde orbits $90^{\circ} < i < 270^{\circ}$, uniformly distributed

Considerations:

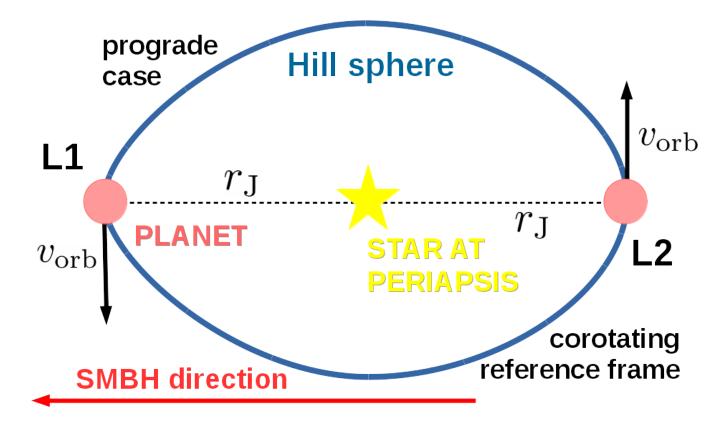
- Planets escaping at 0° or 180° phase have different orbital properties
- Planet orbit remains close to star orbit: $\Delta v_{\rm kick} \approx 10 \, {\rm km/s}$ $\ll v_{\rm orb} \approx 700 \, {\rm km/s}$
- $m_{\text{planet}} \ll m_{\text{star}} \ll M_{\text{SMBH}}$

We can adopt the restricted three-body problem formalism to develop a simple analytic model



Analytic model assumptions

- Planet becomes unbound during the star pericenter passage
- Planet escapes the star Hill sphere from L1 or L2
- Planet velocity with respect to the rotating frame of reference at the moment of escape equals its orbital velocity



Analytic model equations

$$\Delta E = E_{\text{planet}} - E_{\text{star}} = -\frac{GM_{\text{SMBH}}}{p} \frac{r_{\text{J}}}{p - r_{\text{J}}} - v_{\text{p}}^2 \frac{r_{\text{J}}}{p} \left(1 - \frac{1}{2}\frac{r_{\text{J}}}{p}\right)$$
$$\Delta L = L_{\text{planet}} - L_{\text{star}} = -r_{\text{I}}v_{\text{p}} - r_{\text{M}}v_{\text{p}} + r_{\text{I}}v_{\text{p}}v_{\text{p}} + r_{\text{M}}v_{\text{p}}v$$

 $\Delta L = L_{\text{planet}} - L_{\text{star}} = -r_{\text{J}}v_{\text{p}} - pv_{\text{planet}} + r_{\text{J}}v_{\text{planet}}$

where:

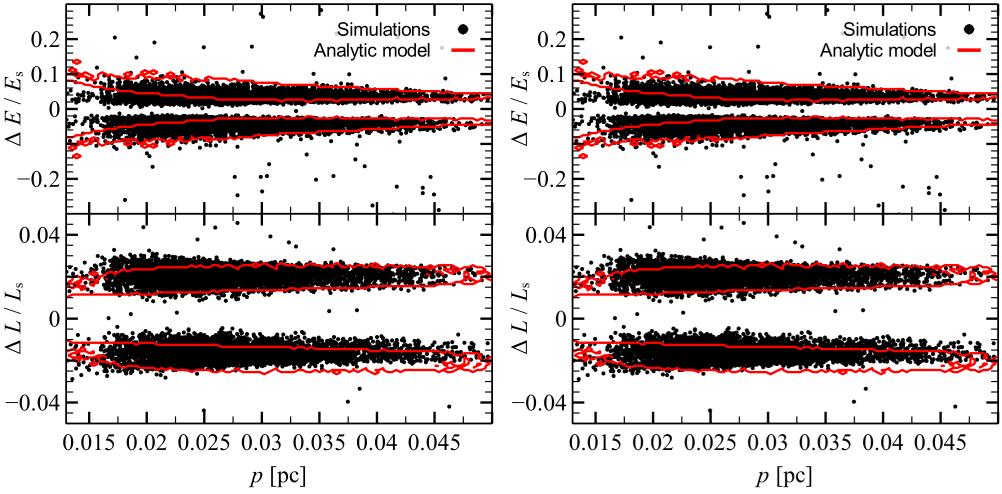
 $p\,$ is periapsis of star orbit

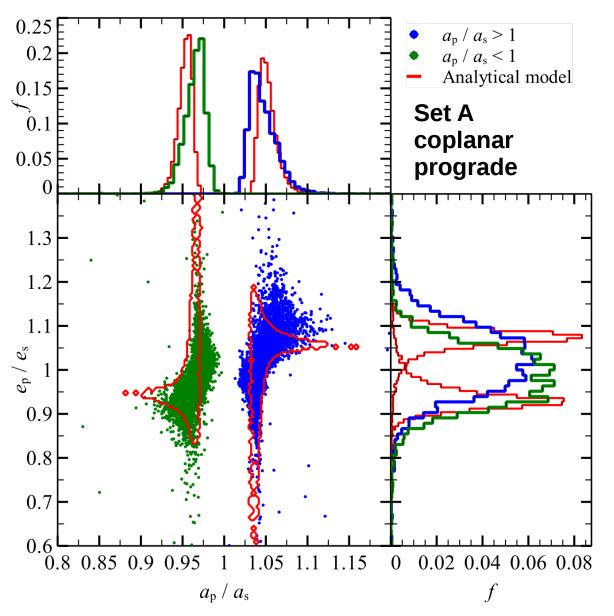
 $r_{\rm J} = p \left(\frac{m_{\rm star}}{3M_{\rm SMBH}}\right)^{1/3}$ is the Jacobi radius of star-planet system at star periapsis passage

 v_{planet} is the planet orbital velocity aroud the star

Analytic model predicts well energy and angular momentum for planets in the prograde case, but not in the retrograde case

Set B coplanar retrograde

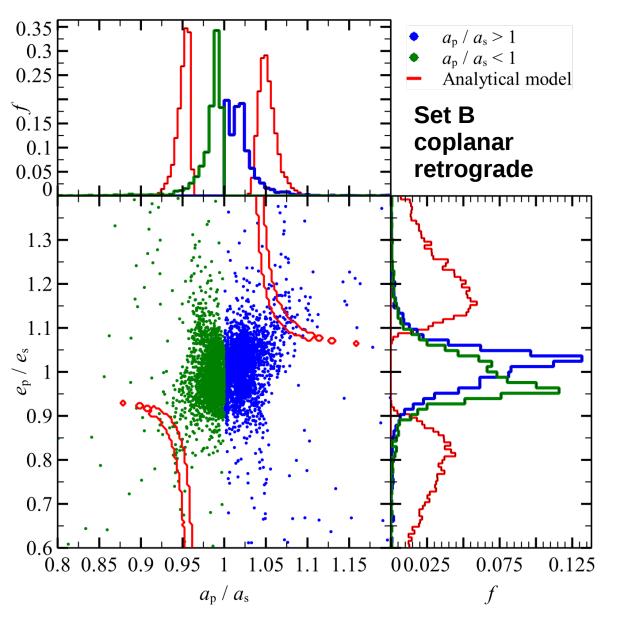




Analytic model, prograde case:

 Predicts the bimodality in semi-major axis distribution

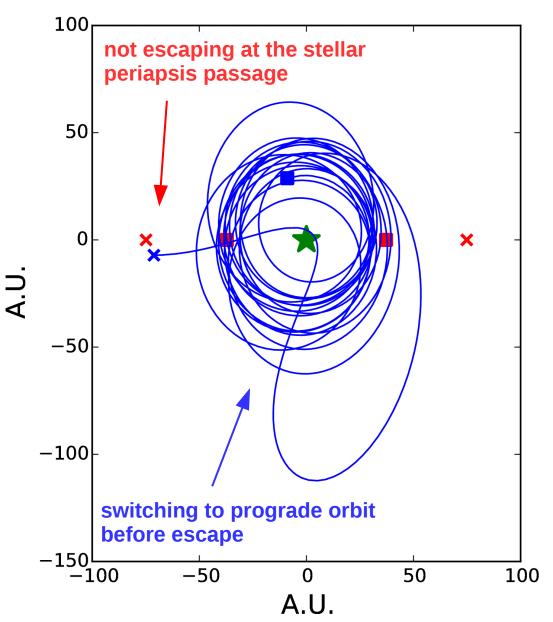
 Predicts the trend in eccentricity and semimajor axis: looser orbits get higher eccentricity, tighter orbits get lower eccentricity



Analytic model, retrograde case:

• Fails to predict simulated distributions

Planets in CW disk: results



Analytic model, retrograde case:

• Fails to predict simulated distributions

Reasons are:

- Retrograde orbits are more convoluted than prograde ones
- Planets can survive many star periapsis passages before getting into unstable orbit
- Planet escape may occur anywhere along the star orbit (breaking the assumption of capture at pericenter distance)

Mikkola's algorithmic regularization

Time transformation: $dt = g(\mathbf{q}, \mathbf{p}, t) ds$ Traformation function: $g(\mathbf{q}, \mathbf{p}, t) = \frac{1}{U(r_{ij})}$ where $U(r_{ij}) = \sum_{i < j}^{N} \frac{m_i m_j}{r_{ij}}$ gravitational potential $r_{ij} = |r_i - r_j|$

Drawback: integrating over g to get back physical timestep t

$$\Delta t = t_0 - t_1 = \int_{s_0}^{s_1} g \, ds \simeq \frac{g(s_0) + g(s_1)}{2} \Delta s + O(\Delta s^3)$$