Two populations of star clusters a feature at all ages

Susanne Pfalzner¹ & Avon Huxor²

1 Max-Planck-Institut für Radioastronomie

2 Astronomisches Recheninstitut

Young clusters

Most stars form not in isolation, but groups of stars Group of spacially correlated stars Group members of fairly equal age

Clusters

Associations

Cluster vs. associations Initial idea

Clusters	Associations
small size	large size
bound	unbound
large mass	small mass
can exist for a long time	dissolve on short timescales

(Victor Ambartsumian 1947)

Size development over first 10-20 Myr

Clusters and associations expand by factor 5-10

Clusters due to stellar encounters

Associations due to gas expulsion

Pfalzner A&A 2009, Portegeis Zwart et al. 2010, Gieles & Portegies Zwart 2011

Young Clusters in nearby galaxies

Mass development

Reason:

Clusterss retain most of their mass

SFE_c= 60-70%

Associations loose 80-90% of their mass

 ${\rm SFE}_{\rm A}$ up to 30%

Cluster vs. associations

Modern idea

Clusters	Associations
Small size But strong development over first 10	extended -20 Myr
bound	unbound
Large mass retain it over time	Small mass Initially large, quick mass loss
Can exist for a long time	Dissolve on short timescales

Cluster vs. associations

Modern idea

Clusters	Associations
Small size But strong development over first 10	extended -20 Myr
bound	unbound
Large mass retain it over time	Small mass Initially large, quick mass loss
Can exist for a long time	Dissolve on short timescales

Gas expulsion in associations

- Size at onset of gas expulsion: I-3pc
- Form mostly with ~30% SFE
- A single massive OB associations feeds 15000-25000 stars within 10-20Myr into the field population
- Remnant: cluster consisting of ~1000-3000 stars within 20pc - leaky cluster
- Full cluster expansion only observed for M>10 000 M_{sun}

How important is gas expulsion?

Different points of view

• Lada & Lada 2003: Gas expulsion very important!

Number counts of embedded and exposed cluster: Infant mortality: 90% of all clusters dissolve before they are 10 Myr old

• Bastian (2011): Gas expulsion in clusters is not important

(multiepoch high-resolution spectroscopy NGC 3603, Westerlund 1, Arches, R136)

Most massive stars in cluster vs. associations

Adapted from Weidner et al. 2010

In clusters more massive than in associations

Errors are relatively large, but so far there seems to be no exception from this trend

Star formation process different in clusters and associations

Cluster vs. associations

Modern idea

Clusters	Associations		
Small size	extended		
But strong development over first 10-20 Myr			
Initial Mass retained	Initially large, quick mass loss		
Higher masses	Lower masses		
Can exist for a long time	Can only be detected, if remnant cluster massive		

Situation at 20 Myr

Expectation, if cluster developed in isolation

Clust	ers	Associations
1-2 pc	2 pc	15-20 pc

10 times more massive

Cluster **10 000 times denser** than associations

more massive stars

different spatial distribution

Additional differences resulting from difference in stellar densities

Two groups of GC clusters

Evidence for two populations of Galactic globular clusters from the ratio their half-mass to Jacobi radii

Standard theory: Extended clusters were accreted

Problem:

It is difficult to extend once compact cluste that size

Baumgardt et al. 2010

Globular clusters in MW

Expectation, if cluster developed in isolation

Clust	ters	ok	Associations	ok
1-2 pc	2-3 pc		15-20 pc	

10 times more massive

Cluster **10 000 times denser** than associations

more massive stars

Masses – extended vs. compact

Compact clusters are 10 times more massive than extended clusters

In addition, differe in:

mass distribution

blue straggler and pulsarproperties

•metallicity (Talk of Florent Renaud)

Cluster formation the same since 10 Gyr?

How about two types of clusters in other galaxies?

Spiral and dwarf galaxies Compact and Extended clusters

Location of clear distinction depends on Galaxy mass

Elliptical galaxies Only compact clusters

Same applies for LMC

One or more modes of clustered star formation?

Why two types of clusters through the ages?

If two types of clusters exist over 10 Gyr, we need to understand why this happens!

Solar neighbourhood: Extended cluster up to 30% SFE

Close to Galactic center and in spiral arms Comapct cluster + extended clusters? up to 60% SFE

Areas of different SFE in the Milky Way?

Why two types of clusters through the ages?

If two types of clusters exist over 10 Gyr, we need to understand why this happens!

A variety of processes could lead to two distinct modes of cluster formation.

Compact clusters only in areas of high density

Why two types of clusters through the Clusters. iations Collapse

Westerlund 2 NGC 3603 show signs of formation by cloud-cloud collisions Arches Quintuplett 57% of the entire known population 30 Dor (Zeidler et al. 2016, Fukui et al. 2014, Stolte et al. 2014)

Would explain the location in spiral arms and Galactic centre

Consequences of two types of clusters

Independent of the meachnism, we have to

Find explanation for the origin of two types of clusters
Find explanation for more massive stars in compact clusters
Different IMFs in both types clusters?
If different mechanisms, than different types of simulations
Determine relative abundance of both types

Advantage, easy explanation forBreak in Kennicutt-Schmitt-LawLow SFE in Galactic Centre: Too high collision speed

Summary

- You find two types of "clusters" in young and old populations
- The properties in mass, radius and other properties correspond to each other

young clusters associations

compact clusters extended clusters

- young cluster formation requires high density
- Possible explanation:

collaps vs. collide formation scenario

Relative abundancies of cluster types

Nearby galaxies:

Only ~ 10% of stars formed in long-lived clusters

90% in clusters that dissolve quickly

Extended clusters representative for early history of field star population