Hierarchical Star Formation in the Magellanic Clouds as Revealed by the VMC Survey

Speaker: Ning-Chen Sun (Peking University)
Collaborators: Richard de Grijs (PhD advisor), Smitha Subramanian, Maria-Rosa L. Cioni (VMC PI), Stefano Rubule, Kenji Bekki, Valentin D. Ivanov, Andrés E. Piatti,Vincenzo Ripepi

- Hierarchical Star Formation
- Magellanic Clouds and the VMC Survey
- 30 Dor-NI58-NI59-NI 60 Complex
- Summary and Future

Hierarchical Star Formation

Galaxies form Jeans-mass cloud complexes, which in turn fragment into clouds and cores in a sequence of decreasing size (lifetime) and increasing density

Young stars follow this pattern and form star complexes on the largest scales, OB associations on smaller scales, and so on to clusters and individual stars
-- hierarchical clustering

Elmegreen II

Elmegreen+06

fractal dimension $D_{2}=1.5$

The size distribution is consistent with that of ISM clouds with Kolmogorov turbulence (power-spectrum slope 3.66)

two-point correlation function, or surface density of companions, with $D_{2}=$ slope +2.0

Clusters Forming in Pairs

The hierarchical stellar structures, especially their fractal dimensions, have been investigated for only a few galaxies and individual star-forming regions

Is there any difference in the stellar clustering properties? If so, what controls them? (stellar feedback, external triggering, evolutionary effects)

> NGC 5477
> $D_{2}=0.98$

$$
\begin{aligned}
& \text { NGC } 1705 \\
& D_{2}=1.86
\end{aligned}
$$

The Magellanic Clouds

stellar mass 3×10^{9} Msun halo mass 1.7×10^{10} Msun HI mass 4.4×10^{8} Msun

Staveley-Smith+2003

Active ongoing star formation in interacting galaxies

proximity: d $=50 \sim 60 \mathrm{kpc}$ no distance ambiguity abundant interesting objects abundant physical processes abundant observational material unique Laboratory for this study

Visible and Infrared Survey Telescope for Astronomy
VISTA
4.1 m telescope; 1.65 deg diameter field of view

ZY J H Ks bands + $1.18 u m$ narrow band
located in Cerro Paranal Observatory in Chile
image credit: ESO

green: once six "pawprints" with offsets to form a "tile" ($1.65 \mathrm{deg}^{2}$)
 light green: twice magenta: 3 times red: 4 times yellow: 6 times

Det 13

Det 4
Det 16
Observe 3 pawprints ($0,1,2$) separated by
$\Delta \mathrm{Y}=47.5 \%$ of a detector

resolution \leq I"
large survey area near-IR wavelengths deep photometry suitable for this study
wavelengths : $\mathrm{Y}(\mathrm{I} .02 \mathrm{um})$, J (I .25 um), Ks (2.15 um)
exposure times : 800s x 3 (Y), 800s x 3 (J), 750s x 12 (Ks)
saturation limits : $12.9 \mathrm{mag}(\mathrm{Y})$, $12.7 \mathrm{mag}(\mathrm{J}), 11.4 \mathrm{mag}(\mathrm{Ks})$
total sensitivities : $21.9 \mathrm{mag}(\mathrm{Y}), 21.4 \mathrm{mag}(\mathrm{J}), 20.3 \mathrm{mag}(\mathrm{Ks})$ (at $\mathrm{S} / \mathrm{N}=10$)
number of tiles : 68 (LMC) 27 (SMC) 13 (Bridge) 2 (Stream) II0 (total) area (deg ${ }^{2}$) : 116 (LMC) 45 (SMC) 20 (Bridge) 3 (Stream) I84 (total)

The 30 Dor-NI58-NI59-NI60 Complex

Sun et al., arXivl6|I.06508, ApJ accepted

- power-law size distribution
- no characteristic scale
- fractal dimension $D_{2}=1.6 \pm 0.3$
- ISM clouds $D_{3} \sim 2.4$ (Roman-Duval+ 10)
- consistent with hierarchical star formation scenarios

$$
\begin{aligned}
& D_{2}=1.4, \text { Taurus (Larson95) other star-forming regions } \\
& D_{2}=1.5, \text { Taurus, Ophiuchus, Orion (Simon97) } \\
& D_{2}=1.4, \text { ngc } 346 \text { (hierarchical component, Gouliermis+14) }
\end{aligned}
$$

stochastic self-propagating star formation (Feizenger 198I) dynamical perturbation of the off-center bar (Gardiner+1998) bow-shock due to the Galactic warm gas (de Boer 1998) Magellanic interaction (Fujimoto 1990, Bekki \& Chiba 2007)

Elmegreen+14

Galaxy	Type	D^{a} (Mpc)	$\boldsymbol{B}_{\text {NS }}$
NGC 1566	SABbc	13.20	-1.34 ± 0.05
NGC 1705	SAOpec [Irr]	5.10	-1.86 ± 0.10
NGC 2500	SBd	10.10	-1.17 ± 0.06
NGC 3738	Im	4.90	-1.39 ± 0.06
NGC 5253	Im pec	3.15	-1.51 ± 0.08
NGC 5477	SAm	6.49	-0.98 ± 0.06
NGC 7793	SAd	344	-1.62 ± 0.08
IC 4247	S? [Irr]	5.11	-1.14 ± 0.04
IC 559	Sc [Irr]	5.30	-1.12 ± 0.14
ESO486-G021	S? [Irr]	9.50	-1.47 ± 0.08
UGC 695	S? [Irr]	10.90	-1.83 ± 0.15
UGC 7408	IAm	6.70	-0.76 ± 0.12

- Galaxies have large range of reported D_{2} values
- Consistent with ngc 628 (I.5, Elmegreen+06) ngc 6503 (I.7, Gouliermis+14) some galaxies in Elmegreen+14
- Deviate more than 3σ with some other galaxies

NGC 1705

$D_{2}=1.86$

NGC 5477
$D_{2}=0.98$

Bastian+09

Evolutionary effects may also contribute to the difference in D_{2}
decreasing amount of substructures

SUMMARY

- the young upper-MS stars exhibit fractal distributions
- group size distribution is a single power law with $D_{2}=1.6 \pm 0.3$
- support a scenario of hierarchical star formation
- consistent with other star-forming regions and some galaxies

FUTURE

