Hierarchical Star Formation in the Magellanic Clouds as Revealed by the VMC Survey

Speaker: Ning-Chen Sun (Peking University)

Collaborators: Richard de Grijs (PhD advisor), Smitha Subramanian, Maria-Rosa L. Cioni (VMC PI), Stefano Rubule, Kenji Bekki,Valentin D. Ivanov, Andrés E. Piatti,Vincenzo Ripepi

- Hierarchical Star Formation
- Magellanic Clouds and the VMC Survey
- 30 Dor-N158-N159-N160 Complex
- Summary and Future

Hierarchical Star Formation

Galaxies form Jeans-mass cloud complexes, which in turn fragment into clouds and cores in a sequence of decreasing size (lifetime) and increasing density

Young stars follow this pattern and form star complexes on the largest scales, OB associations on smaller scales, and so on to clusters and individual stars -- hierarchical clustering

Bassoc.

star complex

with $D_2 = \text{slope} + 2.0$

Clusters Forming in Pairs

The hierarchical stellar structures, especially their fractal dimensions, have been investigated for only a few galaxies and individual star-forming regions

Is there any difference in the stellar clustering properties? If so, what controls them? (stellar feedback, external triggering, evolutionary effects)

The Magellanic Clouds

stellar mass 3x10⁹ Msun halo mass 1.7x10¹⁰ Msun HI mass 4.4x10⁸ Msun

stellar mass 3x10⁸ Msun halo mass 2.4x10⁹ Msun HI mass 4.0x10⁸ Msun

Active ongoing star formation in interacting galaxies

proximity: d = 50 ~ 60 kpc no distance ambiguity abundant interesting objects abundant physical processes abundant observational material unique Laboratory for this study

The VMC Survey

VISTA Survey of the Magellanic Clouds PI: Prof. Maria-Rosa L. Cioni http://star.herts.ac.uk/~mcioni/vmc

Visible and Infrared Survey Telescope for Astronomy 4.1 m telescope; 1.65 deg diameter field of view ZYJHKs bands + 1.18um narrow band located in Cerro Paranal Observatory in Chile

VLT

image credit: ESO

resolution ≤ 1" large survey area near-IR wavelengths deep photometry suitable for this study

wavelengths : Y (1.02 um), J (1.25 um), Ks (2.15 um)
exposure times : 800s x 3 (Y), 800s x 3 (J), 750s x 12 (Ks)
saturation limits : 12.9 mag (Y), 12.7 mag (J), 11.4 mag (Ks)
total sensitivities : 21.9 mag (Y), 21.4 mag (J), 20.3 mag (Ks)
 (at S/N = 10)
number of tiles : 68 (LMC) 27 (SMC) 13 (Bridge) 2 (Stream) 110 (total)
 area (deg²) : 116 (LMC) 45 (SMC) 20 (Bridge) 3 (Stream) 184 (total)

The 30 Dor-NI58-NI59-NI60 Complex

Sun et al., arXiv1611.06508, ApJ accepted

 $\log(\Sigma_{cr} \cdot pc^2) = -1.7 - 1.5 - 1.3 - 1.1$

- power-law size distribution
- no characteristic scale
- fractal dimension $D_2 = 1.6 \pm 0.3$
- ISM clouds $D_3 \sim 2.4$ (Roman-Duval+10)
- consistent with hierarchical star formation scenarios

- $D_2 = 1.4$, Taurus (Larson95) other star-forming regions $D_2 = 1.5$, Taurus, Ophiuchus, Orion (Simon97)
- $D_2 = 1.4$, ngc 346 (hierarchical component, Gouliermis+14)

stochastic self-propagating star formation (Feizenger 1981) dynamical perturbation of the off-center bar (Gardiner+1998) bow-shock due to the Galactic warm gas (de Boer 1998) Magellanic interaction (Fujimoto 1990, Bekki & Chiba 2007)

Elmegreen+14

				- Galar
Galaxy	Туре	D^{a}	B _{NS}	
		(Mpc)		of re
NGC 1566	SABbc	13.20	-1.34 ± 0.05	Can
NGC 1705	SA0pec [Irr]	5.10	-1.86 ± 0.10	- Cons
NGC 2500	SBd	10.10	-1.17 ± 0.06	ngc 6
NGC 3738	Im	4.90	-1.39 ± 0.06	lige O
NGC 5253	Im pec	3.15	-1.51 ± 0.08	ngc 6
NGC 5477	SAm	6.45	-0.98 ± 0.06	
NGC 7793	SAd	3 44	-1.62 ± 0.08	some
IC 4247	S? [Irr]	5.11	-1.14 ± 0.04	
IC 559	Sc [Irr]	5.30	-1.12 ± 0.14	- Devia
ESO486-G021	S? [Irr]	9.50	-1.47 ± 0.08	
UGC 695	S? [Irr]	10.90	-1.83 ± 0.15	some
UGC 7408	IAm	6.70	-0.76 ± 0.12	
	K			
NGC 170	5		NGC 547	7
D ₂ =1.86			D ₂ =0.98	• • • • • • • • • • •
			Star March	
	and the second			
			A CONTRACTOR	
	Contraction of the second	Sile 1		Carlo Starter
				1450
		10.000		

xies have large range ported D_2 values

- sistent with
 - 28 (1.5, Elmegreen+06)
 - 503 (1.7, Gouliermis+14)

e galaxies in Elmegreen+14

ate more than 3σ with e other galaxies

SUMMARY

- the young upper-MS stars exhibit fractal distributions
- group size distribution is a single power law with $D_2 = 1.6 \pm 0.3$
- support a scenario of hierarchical star formation
- consistent with other star-forming regions and some galaxies

FUTURE

