

The relation between GC systems and SMBH in spiral galaxies.
The case study of NGC 4258 (Submitted to AAS Journals)
Rosa A. González-Lópezlira (AIfA,HISKP: UNAM, Mexico)

> Luis Lomelí-Núñez (UNAM, Mexico) Roberto P. Muñoz (PUC, Chile) Karla Álamo-Martínez, (PUC, Chile) Thomas H. Puzia (PUC, Chile) Yasna Órdenes-Briceño (PUC, Chile) Gustavo Bruzual (UNAM, Mexico) Laurent Loinard (UNAM, Mexico) Stephen Gwyn (HIA-NRC, Canada) Iskren Y. Georgiev (MPIA, Germany)

Stellar Aggregates, Bad Honnef, 8 December 2016

Black hole mass scaling relations

σ (Ferrarese \& Merritt 2000; Gebhardt et al. 2000;
Tremaine et al. 2002; Ferrarese \& Ford 2005; Gültekin et al. 2009)

Lbulge (Dressler 1989; Kormendy \& Richstone 1995; Marconi \& Hunt 2003: Graham 2007: Gültekin et al. 2009)

Gebhardt et al. 2000, ApJ, 539, L13

Black hole mass scaling relations

Mbulge (Magorrian et al. 1998; Häring \& Rix 2004)

Häring \& Rix 2004, ApJ, 604, L89

Correlation between $M_{B H}$ and $N_{G C}$

A larger sample

$N_{G C} \propto M_{0}^{1.02 \pm 0.10}$, spans 3 orders of mag, tighter than $M_{\bullet}-\sigma_{\star}$ relation

Harris \& Harris 2011, MNRAS, 410, 2347

Clues to BH and galaxy formation

Small scale (BH) linked to large scale (bulge, and beyond?)

Origin of correlation?

Rooted in initial conditions or through galaxy assembly?

Causal?

E.g., Star and GC formation driven by AGN jets (Silk \& Rees 1998: Fabian 2012)

BH growth through cannibalization of GCs
(Capuzzo-Dolcetta \& collaborators, Gnedint 14, Jalili + 12)

Statistical convergence through hierarchical galaxy formation? (Peng 2007: Jahnke \& Macciò 2011)

Big galaxies have more of everything?

$M_{B H}$ correlations in spirals

Hu 2008, MNRAS, 386, 2242

Greene et al. 2010, ApJ, 721, 26

Bulge vs, pseudobulge or just small mass (Graham 12a,b: Läsker+16)?

$M_{B H}$ vs. $N_{G C}$ in spirals

Harris 1996, AJ, 112, 1487

$M_{B H}$ vs. $N_{G C}$ in spirals

Compared to elliptical galaxies, extremely small number of spiral galaxies with $N_{G C}$ or $M_{B H}$ measurements, especially $\mathrm{N}_{G C}$.
\rightarrow
Extremely sparse overlapping sample.

NGC 4258: the archaetypical megamaser galaxy

X-ray: NASA/CXC/Caltech/P.Ogle et al.: Optical: NASA/STSci; IR: NASA/JPL-Caltech: Radio: NSF/NRAO/VLA

Distance: $7.60 \pm 0.17 \pm 0.15 \mathrm{Mpc} \quad$ Humphreys+ 13 $M_{0}:(4.00 \pm 0.09) \times 10^{7} M_{\odot}$, the most precise extragalactic M_{0} measurement

In spite of megamaser disk, a classical bulge.

Color-color diagrams as diagnostic tools

The $\left(u^{\prime}-i\right)$ vs. $\left(i^{\prime}-K_{s}\right) G C$ selection technique

Muñoz+ 14

NGC 4258, CFHT data

MegaCam archival $u^{*}, g^{\prime}, i^{\prime}, r^{\prime}$ $\mathrm{FOV}=\sim 1^{\circ} \times 1^{\circ}$
1 pixel $=0.186^{\prime \prime} \approx 6.9 \mathrm{pc}$

WIRCam, K_{s}
FOV $=21^{\prime} \times 21^{\prime}$
1 pixel $=0.307^{\prime \prime} \approx 11.4$ pc

$\left(u^{\prime}-i\right)$ vs. $\left(i^{\prime}-K_{s}\right)-u^{\prime} i^{\prime} K_{s}-$ diagram of NGC 4258

Completeness tests (at K_{s})

320,000 sourcés non-overlapping scaled by 1 /area

Light concentration parameters (at i)

Alternative color-color diagrams, light concentration parameters (at i)

FWHM
CLASS_STAR

Final sample

39 objects

SPREAD_MODEL ≤ 0.017
FWHM $\leq 0.84^{\prime \prime}$
$\mathrm{r}_{\mathrm{e}} \leq 6 \mathrm{pc}$
Further eliminated 4 objects, 1 too red in other colors, especially in ($r^{\prime}-i^{\prime}$), and 3 for which re fit did not converge (1 probably the nucleous of a dwarf galaxy).

$$
\begin{aligned}
& \mathrm{TO}=21.3 \mathrm{mag} \\
& \sigma=1.2 \mathrm{mag}
\end{aligned}
$$

Spatial distribution

KS test could not rule out with high significance system drawn from uniform distribution of ϕ, but need spectroscopy!

Color distributions

Same if we just take brighter than LFTO for MW and M31

Decontamination, a direct approach: the Extended Groth Strip

aegis.ucolick.org

Decontamination

Conservatively, 2 contaminants ($\sim 5 \%$), i.e., 37 objects
Consistent with Powalka+16 for M87

Black: detections Red: spectroscopically confirmed Blue: spurious

Total number of clusters, $N_{G C}$

Project MW GC system as viewed if in NGC 4258

(e.g., Kissler-Patig+ 1999, AJ, 118, 197)

Harris 1996, AJ, 112, 1487
$N_{G C}\left(\mathrm{~N}_{4} 258\right)=\mathrm{N}_{G C}($ MilkyWay $) \times \mathrm{N}_{\text {obs }} / \mathrm{N}_{\text {FoV }}$
$i=67^{\circ}$
P.A. 150°

Possible orientations

Edge-on, 4: $+Y+Z,-Y+Z,-Y-Z,+Y-Z$
NGC 4258, 8:
Rotation around $X^{\prime}:+X_{\text {proj }}+Y_{\text {proj, }}+X_{\text {proj }}-Y_{\text {proj }}-X_{\text {proj }}+y_{\text {proj }}-X_{\text {proj }}-y_{\text {proj }}$ Rotation around $y:+x_{\text {proj }}+y_{\text {proj }},+x_{\text {proj }}-y_{\text {proj }},-x_{\text {proj }}+y_{\text {proj }},-x_{\text {proj }}-y_{\text {proj }}$

$N_{G C}$ and S_{N}

$N_{G C}=N_{G C}($ MilkyWay $) \times N_{\text {obs }} / N_{\text {FoV }}$
$\mathrm{N}_{G C}$ (MilkyWay) $=160 \pm 10$ (Harris et al. 2014)
$N_{\text {obs }}=39-2=37$
$N_{\text {FOV }}=41 \pm 5$ (average of 8 projections)
$\Rightarrow N_{G C}=144 \pm 31$ (statistical error)
Systematics:
Δ distance $(\pm 0.23 \mathrm{Mpc}) \Rightarrow \Delta N_{G C}=+12 /-3$ (mainly, limiting mag)

Difference in obscuration wrt MW, assume 25\%

$$
\Rightarrow N_{G C}=144 \pm 31^{+38}{ }_{-36}
$$

$N_{G C}$ and S_{N}

$S_{N}=N_{G C} \times 10^{0.4 \times[M V+15]}=0.39 \pm 0.09$ (statistical only)
$S_{N}=0.39 \pm 0.13$ if Δ obscuration included (Δ distance cancels out)
For comparison, $S_{N}(M W)=0.5 \pm 0.1$ (Ashman \& Zepf 1998)

$N_{G C}$ and $M_{G C}$ vs. M_{\bullet}

$\log N_{G C}=$
$\log M_{G C} /$ Msun $=$

Potentially much less biased by incompleteness: more than 90\% of mass in clusters brighter than 1 mag beyond LFTO.

Near future

A spectroscopic study will:

- Further validate procedures of souce detection and selection
- Confirm GCC membership
- Determine kinematics, shape of system (disky?), DM content (or alternative)
- Investigate correlation between GC system velocity dispersion and M. (Sadoun \& Colin 2012)

Conclusions

Successfiully applied these 1 atik, 2 EC selection techinigue for the firstr time to a spires.

istikn diagrasss + lighis concentration parameters the most efficient photometric tool to study EC systems; much cheaper than spectroscopy.

Detected 39 ECCs in NGC 4258. Color distribution consistent with MW and M31 EC systems.

Conclusions

$$
N_{G C}=144+31, S_{N}=0.4=0.1
$$ (resselons uncerricisisy ondy). NEC t253

 relarion for ellipirical galasios. The MW contrinues to be the only spiral that deviaties significanitly.

We need a larges sarmple of low mass galaxies of diffferents morphologies. E.g., parallel seguence (BH feeding efficiency) or scaifter (convergence through merging)?

At the very leastr, $N_{G c}$ vs. Mo correlation probe of otherwise inaccessible BH masses.

