

The relation between GC systems and SMBH in spiral galaxies. The case study of NGC 4258

Rosa A. González-Lópezlira (AIFA, HISKP; UNAM, Mexico)

Luis Lomelí-Núñez (UNAM, Mexico) Karla Álamo-Martínez, (PUC, Chile) Yasna Órdenes-Briceño (PUC, Chile) Laurent Loinard (UNAM, Mexico) Iskren Y. Georgiev (MPIA, Germany)

Roberto P. Muñoz (PUC, Chile) Thomas H. Puzia (PUC, Chile) Gustavo Bruzual (UNAM, Mexico) Stephen Gwyn (HIA-NRC, Canada)

Stellar Aggregates, Bad Honnef, 8 December 2016

Black hole mass scaling relations

σ (Ferrarese & Merritt 2000; Gebhardt et al. 2000; Tremaine et al. 2002; Ferrarese & Ford 2005; Gültekin et al. 2009)

L_{bulge} (Dressler 1989; Kormendy & Richstone 1995; Marconi & Hunt 2003: Graham 2007; Gültekin et al. 2009)

Gebhardt et al. 2000, ApJ, 539, L13

Black hole mass scaling relations

M_{bulge} (Magorrian et al. 1998; Häring & Rix 2004)

Häring & Rix 2004, ApJ, 604, L89

Correlation between M_{BH} and N_{GC}

A larger sample

 $N_{gc} \propto M_{\bullet}^{1.02\pm0.10}$, spans 3 orders of mag, tighter than M_{\bullet} - σ_{\star} relation

Harris & Harris 2011, MNRAS, 410, 2347

Clues to BH and galaxy formation

Small scale (BH) linked to large scale (bulge, and beyond?)

Origin of correlation?

Rooted in initial conditions or through galaxy assembly?

Causal? E.g., Star and GC formation driven by AGN jets (Silk & Rees 1998; Fabian 2012)

> BH growth through cannibalization of GCs (Capuzzo-Dolcetta & collaborators, Gnedin+ 14, Jalili+ 12)

Statistical convergence through hierarchical galaxy formation? (Peng 2007; Jahnke & Macciò 2011)

Big galaxies have more of everything?

M_{BH} correlations in spirals

Bulge vs. pseudobulge or just small mass (Graham 12a,b; Läsker+ 16)?

 M_{BH} vs. N_{GC} in spirals

Gemini Observatory

Harris 1996, AJ, 112, 1487

M_{BH} vs. N_{GC} in spirals

Compared to elliptical galaxies, extremely small number of spiral galaxies with N_{GC} or M_{BH} measurements, especially N_{GC} .

Extremely sparse overlapping sample.

NGC 4258: the archaetypical megamaser galaxy

X-ray: NASA/CXC/Caltech/P.Ogle et al.; Optical: NASA/STSci; IR: NASA/JPL-Caltech; Radio: NSF/NRAO/VLA

Image courtesy of NRAO/AUI

Distance: $7.60 \pm 0.17 \pm 0.15$ Mpc Humphreys+ 13 M₂: (4.00±0.09) × 10⁷ M₀, the most precise extragalactic M₀ measurement

In spite of megamaser disk, a classical bulge.

Color-color diagrams as diagnostic tools

-0.5

0.0

 $V_{606} - I_{814}$

0.5

1.0

Fedotov+ 11

1.5

Georgiev+ 06

The (u'-i') vs. $(i'-K_s)$ GC selection technique

Muñoz+ 14

NGC 4258, CFHT data

MegaCam archival u*,g',i',r' FOV = ~1° x 1° 1 pixel = 0.186″ ≈ 6.9 pc

WIRCam, K_s FOV = 21' × 21' 1 pixel = 0.307" ≈ 11.4 pc

(u'-i') vs. $(i'-K_s) - u'i'K_s$ - diagram of NGC 4258

Completeness tests (at K_s)

320,000 sources non-overlapping scaled by 1/area

Light concentration parameters (at i)

the product of the

Alternative color-color diagrams, light concentration parameters (at *i*)

FWHM

CLASS_STAR

Final sample

39 objects

 $TO = 21.3 mag \\ \sigma = 1.2 mag$

SPREAD_MODEL \leq 0.017 FWHM \leq 0.84" $r_e \leq$ 6 pc

Further eliminated 4 objects, 1 too red in other colors, especially in (r' - i'), and 3 for which re fit did not converge (1 probably the nucleous of a dwarf galaxy).

GCLF

Spatial distribution

KS test could not rule out with high significance system drawn from uniform distribution of ϕ , but need spectroscopy!

Color distributions

Same if we just take brighter than LFTO for MW and M31

Decontamination, a direct approach: the Extended Groth Strip

N4258

aegis.ucolick.org

Decontamination

Conservatively, 2 contaminants (~5%), i.e., 37 objects

Consistent with Powalka+ 16 for M87

Black: detections Red: spectroscopically confirmed Blue: spurious

Total number of clusters, N_{GC}

http://www.physics.mcmaster.ca/ Fac_Harris/Harris_SaasFee.pdf

Project MW GC system as viewed if in NGC 4258 (e.g., Kissler-Patig+ 1999, AJ, 118, 197)

Harris 1996, AJ, 112, 1487

 $N_{GC}(N4258) = N_{GC}(MilkyWay) \times N_{obs}/N_{FOV}$

i=67° P.A. 150°

Possible orientations

Edge-on, 4: +Y +Z, -Y +Z, -Y -Z, +Y -Z

NGC 4258, 8: Rotation around X': $+X_{proj}$ $+Y_{proj}$, $+X_{proj}$ $-Y_{proj}$, $-X_{proj}$ $+Y_{proj}$, $-X_{proj}$ $-Y_{proj}$ Rotation around Y : $+X_{proj}$ $+Y_{proj}$, $+X_{proj}$ $-Y_{proj}$, $-X_{proj}$ $+Y_{proj}$, $-X_{proj}$ $-Y_{proj}$

N_{GC} and S_N

 $N_{GC} = N_{GC}$ (MilkyWay) × N_{obs}/N_{FOV} N_{GC} (MilkyWay) = 160±10 (Harris et al. 2014)

 $N_{obs} = 39 - 2 = 37$

 $N_{FOV} = 41 \pm 5$ (average of 8 projections)

=> N_{GC} = 144±31 (statistical error)

Systematics:

 \triangle distance (± 0.23 Mpc) => \triangle N_{GC} = +12/-3 (mainly, limiting mag)

Difference in obscuration wrt MW, assume 25%

 $=> N_{GC} = 144 \pm 31^{+38}_{-36}$

N_{GC} and S_N

 $S_N = N_{GC} \times 10^{0.4 \times [MV + 15]} = 0.39 \pm 0.09$ (statistical only) $S_N = 0.39 \pm 0.13$ if Δ obscuration included (Δ distance cancels out) For comparison, S_N (MW) = 0.5 ± 0.1 (Ashman & Zepf 1998)

N_{GC} and M_{GC} vs. M_e log M_{GC}/Msun =

Potentially much less biased by incompleteness; more than 90% of mass in clusters brighter than 1 mag beyond LFTO.

Near future

A spectroscopic study will:

- Further validate procedures of souce detection and selection
- Confirm GCC membership
- Determine kinematics, shape of system (disky?), DM content (or alternative)
- Investigate correlation between GC system velocity dispersion and M_o (Sadoun & Colin 2012)

Conclusions

Successfully applied the $u^{*i}K_{s}$ GC selection technique for the $\frac{1}{2}$ first time to a spiral.

u*iK, diagram + light concentration parameters the most efficient photometric tool to study GC systems; much cheaper than spectroscopy.

Detected 39 GCCs in NGC 4258. Color distribution consistent with MW and M31 GC systems.

Conclusions

 $N_{gc} = 144\pm31$, $5_N = 0.4\pm0.1$ (random uncertainty only). NGC 4253 falls within 2 σ on the N_{gc} vs. M_{J} relation for elliptical galaxies. The MW continues to be the only spiral that deviates significantly.

We need a larger sample of low mass galaxies of different morphologies. E.g., parallel sequence (BH feeding efficiency) or scatter (convergence through merging)?

At the very least, N_{GC} vs. M_o correlation probe of otherwise inaccessible BH masses.

THANKS!