Importance of the initial conditions for star and star cluster formation

Philipp Girichidis

Daniel Seifried, Steffi Walch (University fo Cologne) Thorsten Naab (MPA Garching) Robi Banerjee (Hamburger Sternwarte) Ralf Klessen (University of Heidelberg)

HITS Heidelberg

December 6, 2016

◆□▶ ◆□▶ ◆注≯ ◆注≯ ─ 注

Star formation on different scales

Star-forming Region

Arzoumanian et al. (2011)

- very complex morphology
- filamentary structure
- turbulent motions

difficult to use as initial conditions use highly simplified conditions (not realistic)

Könyves et al. (2010)

- critical / supercritical BE sphere
- trans- / supersonic velocity dispersion

Philipp Girichidis (HITS Heidelberg)

December 6, 2016 3 / 25

Core Density Profile (Observation)

Fragmentation

Massive dense cores in Cygnus X (Bontemps et al. 2010)

3.5 mm and 1.5 mm observations, resolution limit: 1700 AU

mass: $84 M_{\odot}$, size: 20,000 AU

Massive dense cores in Cygnus X (Bontemps et al. 2010)

mass: $58 M_{\odot}$, size: 20,000 AU

- complex gas motions with turbulent character
 Mac Low & Klessen (2004), Elemegreen & Scalo (2004), McKee & Ostriker (2007)
- $\sigma^2 = \sigma_{therm}^2 + \sigma_{turb}^2$, where σ_{turb}^2 dominates for cores $L > 0.01 0.1\,{
 m pc}$
- distinction between modes (simulations: Schmidt et al. (2009), Federrath et al. (2010)):
 - compressive modes $\vec{\nabla} \times \vec{v} = \vec{0}$
 - solenoidal modes $\vec{\nabla} \cdot \vec{v} = 0$
 - measurements via the widths of the pdf
 - connect widths to modes $\sigma^2 = \ln(1 + b^2 \mathcal{M}^2)$
 - with b = 1/3 : solenoidal modes & b = 1 : compressive modes

Thermal properties of star-forming regions

- heating: compression, CR
- cooling: C, O, dust
- equilibrium temperature: $T_{\rm eq} \approx 10 \ {\rm K}$

- high-mass star-forming regions: $T_{\rm eq} \approx 20$ K (Beuther et al. 2007)
- Jeans mass:

$$M_{\rm J} \propto \frac{T^{3/2}}{
ho^{1/2}} \sim 1 \, M_{\odot}$$

 \Rightarrow free-fall conditions

(1)

Collapse Time Scales

• free-fall times are similar, small perturbations can have effect

Impact of the initial density profile

Girichidis et al. 2011

< A[™] →

Impact of the initial density profile

Girichidis et al. 2011

Image: A matrix and a matrix

Impact of the random seed

Girichidis et al. 2011

Global stellar differences

Run	t _{sim} [kyr]	$t_{\rm sim}/t_{\rm ff}^{\rm core}$	$t_{\rm sim}/t_{\rm ff}$	N _{sinks}	M _{max}
 TH-m-1	48.01	0.96	0.96	311	0.86
TH-m-2	45.46	0.91	0.91	429	0.74
BE-c-1	27.52	1.19	0.55	305	0.94
BE-c-2	27.49	1.19	0.55	331	0.97
BE-m-1	30.05	1.30	0.60	195	1.42
BE-m-2	31.94	1.39	0.64	302	0.54
BE-s-1	30.93	1.34	0.62	234	1.14
BE-s-2	35.86	1.55	0.72	325	0.51
PL15-c-1	25.67	1.54	0.51	194	8.89
PL15-c-2	25.82	1.55	0.52	161	12.3
PL15-m-1	23.77	1.42	0.48	1	20.0
PL15-m-2	31.10	1.86	0.62	308	6.88
PL15-s-1	24.85	1.49	0.50	1	20.0
PL15-s-2	35.96	2.10	0.72	422	4.50
PL20-c-1	10.67	0.92	0.21	1	20.0

- 一司

э

Accretion shielding

central objects are shielded from accretion streams

Philipp Girichidis (HITS Heidelberg)

Initial conditions matter

December 6, 2016 14 / 25

Impact of the strength of the turbulence

weak turbulent motions

Philipp Girichidis (HITS Heidelberg)

Impact of the strength of the turbulence

strong turbulent motions

Philipp Girichidis (HITS Heidelberg)

Initial conditions matter

December 6, 2016 16 / 25

- concentrated density profiles abet the formation of massive stars
- compressive turbulence enhances cloud fragmentation
- weak turbulence favours filamentary star formation
- fragmentation leads to efficient accretion shielding

star formation strongly depends on the immediate surroundings
 ⇒ need to adapt the correct environmental conditions

ISM details on different scales

Lifecycle of molecular clouds Cooling & Collapse

The Line of the state of the st

SILCC: SImulating the LifeCycle of molecular Clouds

project

ústav

Universität Heidelberg

University.

Stellar Feedback & Outflows

< 67 ▶

Setup for ISM simulations

- stratified box (deAvillez+2004, 2005, Kim & Ostriker+ 2013, 2014, 2015, Hennebelle & Iffrig 2015)
- external potential (ρ_*)
- Magnetohydrodynamics
- atomic, mol., metal cooling (follow H⁺, H, H₂, C⁺, CO) (Glover et al. 2012, Walch et al. 2015)
- shielding effects (high optical depth)
- feedback from stars (SNe)
- cosmic rays
- MW conditions: $10 \frac{M_{\odot}}{\mathrm{pc}^2}$, Z_{\odot}

Stratified box sims (Walch et al. 2015, Girichidis et al. 2016a)

20 / 25

ISM simulations including CRs (Girichidis et al. 2016b)

Philipp Girichidis (HITS Heidelberg)

Initial conditions matter

December 6, 2016 21 / 25

Zoom-in (resolution)

Zoom-in (chemistry)

Zoom-in (dynamics)

determine self-consistent dynamics

Image: A match a ma

As the initial conditions for immediate star formation matter:

- we need to follow the dynamics from MC formation down to cores
- we need chemical evolution for the proper cooling
- we need cosmic rays to account for the dynamical & thermal effects