Fragmentation modes \& the morphology of Star Forming Regions

 (\& Massive cluster formation-montChristian Boily, Observatoire astronomique de Strasbourg, France T. Maschberger, E. Moraux, C. Becker, IPAG, Grenoble
J. Dorval, Strassburg (PhD)
V. Niederkorn (MSc)

Bad Honnef / 'Aggregates' meeting / 5 December 2016

The Growth of Fragmentation modes \& the morphology of Star Forming Regions

Christian Boily, Observatoire astronomique de Strasbourg, France Email: christian.boily@astro.unistra.fr

The Growth of Fragmentation modes \& the morphology of Star Forming Regions

Christian Boily, Observatoire astronomique de Strasbourg, France Email: christian.boily@astro.unistra.fr

(s)he's not a perfect 10 anymore !

The Growth of Fragmentation modes \& the morphology of Star Forming Regions

Christian Boily, Observatoire astronomique de Strasbourg, France Email: christian.boily@astro.unistra.fr

Morphology:

- matters
- can be quantified
- varies over time

(s)he's not a perfect 10 anymore !

Morphology Zoom-in : Spitzer IR data Example: the ONC star-forming region

Green
young stars (TTauri, ..)

Red dots : proto-stars

Figure 14. Left: mosaic of the ONC field. Blue is $4.5 \mu \mathrm{~m}$, green is $5.8 \mu \mathrm{~m}$, and red is $24 \mu \mathrm{~m}$. Right: $4.5 \mu \mathrm{~m}$ image with the positions of dusty YSOs superimposed. Green diamonds are young stars with disks, red asterisks are protostars (including the faint candidate protostars and the 10 red candidate protostars detected at $24 \mu \mathrm{~m}$ but not at $4.5,5.8$, and $8 \mu \mathrm{~m}$). In both panels, the green line outlines the surveyed field. The Orion Nebula is the extremely bright region just south of the center of the mosaic. The central region of this nebula is saturated in the $24 \mu \mathrm{~m}$ band. The extended reflection nebula to the north of the Orion Nebula is NGC 1977. Between the Orion Nebula and NGC 1977 is a filament rich in protostars known as the OMC-2/3 region. The large bubble to the southwest of the Orion Nebula is the extended Orion Nebula (Gudel et al. 2008).

Credits : S. Megeath et al. 2012, 2015

Ph. André et al.: Kinematics of the Ophiuchus protocluster condensations

Kinematics in the @Ophiuchus region (IRAM 30 m data) credits : Ph. André et al. 2007, AA

Fragmentation in star-formation calculations

- SPH resimulation of isothermal collapse but with opacity
- Time in units of the free-fall time $\sim 2 \times 10^{5}$ yrs
- From $250 \triangleright 180$ cores formed
- $M=500 M_{\text {sun, }} R_{o} \approx 1 / 2$ pc $T \approx 10 \mathrm{~K}$ ($a \sim 1.8 \times 10^{3} \mathrm{Msun}_{\text {un }} / \mathrm{pc}^{3}$ initially)
- Linear resolution ~ 0.5 AU

Still ~ 3 orders of magnitude from rich clusters
M. Bate 2011, MN

Transition : embedded \triangleright gas-free. Yes, but how .. ?

- embedded cores / associations m.f. ~ cluster m.f.
- details of mass-loss unclear, slower than energy argument would suggests (winds, SN, .. e.g. J. Dale 10/2015 webcast STScI) \triangleright boost survival rate
- active star-forming regions with gas have stellar kinematics compatible with in-situ star formation (e.g. ค Ophiucus [André et al. 2007] or NGC 1333 where $\sigma \sim 0.8 \mathrm{~km} / \mathrm{s}$ [Foster et al. 2015, In-Sync survey])
- Phase-mixing and relaxation on a time-scale well exceeding the star-formation time-scale

Ph. André et al.: Kinematics of the Ophiuchus protocluster condensations

Kinematics in the @Ophiuchus region (IRAM 30 m data) credits: Ph. André et al. 2007, AA

Kinematics in the Qupniucnus regıon (⿺𠃊ivı Ju m aata) credits: Ph. André et al. 2007, AA

Initial conditions for stellar dynamics: different approaches

- Classic argument: stars are as cool/cold as gas is
- All mixed up, no mass- or length scale: monolithic collapse, no structure in density or velocity
- Some spatial profile (King, Plummer, ..) with velocities drawn from «equilibrium» d.f. (e.g. Caputo et al. 2014, ..)
- Turbulence imprints young stellar spatial distributions (W43 - Nguyen et al. 2013; G0.253+0.016 / ALMA, Rathborne et al. 2015)
- 'Fractal' distribution : looks like star-forming region, but velocities odd, ad hoc (Goodwin \& Withworth 2004, R. Allison et al. 2009+ +, B. Elmegreen 1997, ..)

Study the fragmentation of self-gravitating fluids

- Cold fluid perturbed by density fluctuations : linear analysis
- Work on a spherical mesh (boundaries) but with randomly seeded perturbations (in density)
- Write Lagrangian operators
* Integrate .. but stay coherent

$$
\begin{array}{r}
\frac{d^{2}}{d t^{2}} r^{\prime}=-\nabla_{r^{\prime}}(\Phi+\delta \Phi) \\
\nabla_{r^{\prime}}=\nabla_{r}+\xi \cdot \nabla_{r}(\nabla) \\
r^{\prime}=r+\xi
\end{array}
$$

Results begin to "look like" star forming regions but something is missing : time + resolution (D stellar cores)

Fragmentation of self-gravitating fluids

- http: / / www.freefem.org (le FEM fatal .. ;)

mail to FreeFem++ list

Sections

Home
Wiki
Mailing list
FreeFem++-cs
Freefem++ on the web
Showcase
Web News
Documentation
freefem++doc.pdf (9.3 Mb , Sep
29, 2015 10:28:44.)
Last News (INNOVATION)
HISTORY
knows BUGS
Una documentation en español Chinese documentation Japanese (Kohji Ohtsuka) TWSIAM Activity Group
Compilation/Installation Download

FreeFem++ v 3.46

(April 082016 17:56:26.)
Introduction

FreeFem++ is a partial differential equation solver. It has its own language. freefem scripts can solve multiphysics non linear systems in 2D and 3D.
Problems involving PDE (2d, 3d) from several branches of physics such as fluid-structure interactions require interpolations of data on several meshes and their manipulation within one program. FreeFem++ includes a fast $2 \wedge$ d-tree-based interpolation algorithm and a language for the manipulation of data on multiple meshes (as a follow up of bamg (now a part of FreeFem++).

FreeFem++ is written in C++ and the FreeFem++ language is a C++ idiom. It runs on Macs, Windows, Unix machines. FreeFem++ replaces the older freefem and freefem+.

If you use Freefem++ please cite the following reference in your work (books, articles, reports, etc.): Hecht, F. New development in Freefem++. J. Numer. Math. 20 (2012), no. 3-4, 251-265. 65 Y 15
the bibtex is:
article $\{$ MR3043640
AUTHOR $=\{$ Hecht, F. $\}$, TITLE $=\{$ New development in FreeFem++ $\}$,
JOURNAL $=$ \{J. Numer. Math.\}, FJOURNAL $=$ \{Journal of Numerical Mathematics \},
VOLUME $=\{20\}$, YEAR $=\{2012\}$,
NUMBER $=\{3-4\}$, PAGES $=\{251--265\}$,
ISSN $=\{1570-2820\}$, MRCLASS $=\{65 \mathrm{Y} 15\}, \operatorname{MRNUMBER}=\{3043640\}$,
\}

HPC and FreeFem++

Fragmentation of self-gravitating fluids

- http: / / www.freefem.org (le FEM fatal .. ;)

Fragmentation of self-gravitating fluids

- Problem : all stars are not born equal (mass)
- star - star interactions should come to dominate the internal structure of fragments / relaxation takes us quickly into the non-linear regime
strong function
$t_{m s}=\frac{0.138}{6} \pi\left(\frac{3}{4 \pi}\right)^{1 / 2} \frac{\left\langle m_{\star}\right\rangle}{\max \left\{m_{*}\right\}} \frac{N_{\lambda}}{\ln 0.4 N_{\lambda}}\left(G \rho_{g}\right)^{-\frac{1}{2}}$

- Take two : restart the computation but with a collisional Nbody code (Nbody6/7++, kira, ..)

Building up by cooling \& accreting: fragmentation modes but with

unconstrained growth

:: Fragmentation in cosmology : some familiar faces from la Cosa Nera Davis et al. (1985) CDM 'Bottom-up' picture ...

time

Procedure - avoid boundaries Dorval et al. 2016, in the press ..

The
 Minimum Spanning Tree

- Delaunay Triangulation + Kruskal's algorithm
- Implementation from NRv3 (C++)

MST
reconstruction
(zoom)

The

Minimum Spanning Tree

* Delaunay Triangulation + Kruskal's algorithn
- Implementation from NRv3 (C++)

Stellar clumps: mass function, and stellar m.f.

Equal-mass models vs Salpeter IMF (two upper truncation values)

Stellar clumps: mass function, and stellar m.f.

Equal-mass models vs Salpeter IMF (two upper truncation values)

Stellar clumps:

correlation with max $\left\{m_{x}\right\}$

:: white dash: prediction from «radius of influence» of most massive star in clump

Stellar clumps: top-heavy, segregated ..

:: blue / grey : Salpeter (ensemble averaging)

Figure 10. Radial ranking of first, second and third most massive star in each clump for a model with $\mathrm{N}=40000$ stars (R40h100).

Ranking diagnostics of Maschberger et al. (2010) for hydro simulation cf. Vesperini, McMillan 2007, -12, -15

Stellar clumps: top-heavy, segregated ..

:: blue / grey : Salpeter (ensemble averaging)

Figure 10. Radial ranking of first, second and third most massive star in each clump for a model with $\mathrm{N}=40000$ stars (R40h100).

Ranking diagnostics of Maschberger et al. (2010) for hydro simulation cf. Vesperini, McMillan 2007, -12, -15

Stellar clumps: top-heavy, segregated ..

Stellar clumps: top-heavy, segregated ..

:: blue / grey : Salpeter (ensemble averaging)

Figure 10. Radial ranking of first, second and third most massive star in each clump for a model with $\mathrm{N}=40000$ stars (R40h100).

Ranking diagnostics of Maschberger et al. (2010) for hydro simulation cf. Vesperini, McMillan 2007, -12, -15

Stellar clumps: top-heavy, segregated ..

Initial conditions : the

MVP approach

A DYNAMICAL ORIGIN FOR EARLY MASS SEGREGATION IN YOUNG STAR CLUSTERS
 Stephen L. W. McMillan and Enrico Vesperini
 Department of Physics, Drexel University, Philadelphia, PA; steve@physics.drexel.edu, vesperin@physics.drexel.edu
 Simon F. Portegies Zwart
 Astronomical Institute "Anton Pannekoek" and Section Computational Science, University of Amsterdam, Kruislaan 403, Amsterdam, Netherlands; spz@ science.uva.nl Received 2006 September 18; accepted 2006 December 12; published 2007 January 11

- le Mc + EV + SPZ $(2007,2014)$: Mass segregation amplified by repeated mergers (D inheritance, memory)
- Segregation continues during the relaxation phase + beyond (in the classic fashion, then)
:: Consequently sub-units would segregate if small enough, before the global relaxation phase

Also : Allison et al. 2009, R. Parker, ..

Initial conditions : the

A DYNAMICAL ORIGIN FOR EARLY MASS SEGREGATION IN YOUNG STAR CLUSTERS
 Stephen L. W. McMillan and Enrico Vesperini
 Department of Physics, Drexel University, Philadelphia, PA; steve@physics.drexel.edu, vesperin@ physics.drexel.edu
 AND
 Simon F. Portegies Zwart
 Astronomical Institute "Anton Pannekoek" and Section Computational Science, University of Amsterdam, Kruislaan 403, Amsterdam, Netherlands; spz@ science.uva.nl Received 2006 September 18; accepted 2006 December 12; published 2007 January 11

$$
\begin{aligned}
& \text { le Mc }+\mathrm{EV}+\operatorname{SPZ}(2007,2014) \text { : Mass } \\
& \text { segregation amplified by repeated } \\
& \text { mergers (} D \text { inheritance, memory) }
\end{aligned}
$$

:: see e.g. Haghi et al. 2014

:: Consequently sub-units would segregate if small enough, before the global relaxation phase Also : Allison et al. 2009, R. Parker, ..

Morphology - The

Minimum Spanning Tree approach

- Delaunay Triangulation + Kruskal's algorithm
- Implementation from NRv3 (C++)
- Morphology : apparent vs real .. selection, extinction
* Use the Pann-Starrs1 extinction map (Green et al. 2015, ..)

Morphology - The

Minimum Spanning Tree approach

- Delaunay Triangulation + Kruskal's algorithm
- Implementation from NRv3 (C++)
- Morphology : apparent vs real .. selection, extinction
* Use the Pann-Starrs1 extinction map (Green et al. 2015, ..)

MST: distribution of edges

- Distribution differs if selected stars are "packed" together
- Useful to determined relative mass segregation (Alison, Parker ..)
- Cumulative distribution

Uniformly sampled surface / normalized

MST: distribution of edges

Uniformly sampled
surface / normalized

Uniformly sampled + fragmented model

MST: distribution of edges

Uniformly sampled
surface / normalized

Uniformly sampled + fragmented model

MST: distribution of edges

Uniformly sampled surface / normalized

Uniformly sampled + fragmented model

Effect of global geometry

MST: distribution of edges

Different projection angles

Selection by mass / renormalized

MST: distribution of edges

Different projection angles

Selection by mass / renormalized

MST: distribution of edges

Different projection angles

Selection by mass / renormalized

MST: distribution of edges

Different projection angles

Guthermut et al. 2009, ApJS

Summary

- Young clusters (open, rich, even globulars) start out with odd geometry and sub-virial global velocities
- They should mix quickly yet have time to form stars first
- A calculation based on adiabatic («cosmological») expansion allows to setup fragmented stellar systems with self-consistent velocities + cover large area (>> $1 \mathrm{pc}^{2}$)
- The stellar clumps are top-heavy with respect to field stars ;
- The dynamics along filaments enhances breaks in the MST statistics.

