Understanding Binary Black Holes Through Gravitational Wave Detections

M. Benacquista University of Texas Rio Grande Valley Center for Gravitational Wave Astronomy

		GW150914			GW151226			LVT151012	
	EOBNR	IMRPhenom	Overall	EOBNR	IMRPhenom	Overall	EOBNR	IMRPhenom	Overall
Detector frame									
Total mass $M/{ m M}_{\odot}$	$71.0^{+4.6}_{-4.0}$	$71.2^{+3.5}_{-3.2}$	$71.1^{+4.1\pm0.7}_{-3.6\pm0.8}$	$23.6^{+8.0}_{-1.3}$	$23.8^{+5.1}_{-1.5}$	$23.7^{+6.5\pm2.2}_{-1.4\pm0.1}$	45^{+17}_{-4}	44^{+12}_{-3}	$44^{+16\pm5}_{-3\pm0}$
Chirp mass \mathcal{M}/M_{\odot}	$30.4^{+2.3}_{-1.6}$	$30.7^{+1.5}_{-1.5}$	$30.6^{+1.9\pm0.3}_{-1.6\pm0.4}$	$9.71\substack{+0.08 \\ -0.07}$	$9.72\substack{+0.06\\-0.06}$	$9.72^{+0.07\pm0.01}_{-0.06\pm0.01}$	$18.1^{+1.3}_{-0.9}$	$18.1\substack{+0.8 \\ -0.8}$	$18.1^{+1.0\pm0.5}_{-0.8\pm0.1}$
Primary mass m_1/M_{\odot}	$40.2^{+5.2}_{-4.8}$	$38.5^{+5.4}_{-3.3}$	$39.4^{+5.4\pm1.3}_{-4.1\pm0.2}$	$15.3^{+10.8}_{-3.8}$	$15.8^{+7.2}_{-4.0}$	$15.6^{+9.0\pm2.6}_{-4.0\pm0.2}$	29^{+23}_{-8}	27^{+19}_{-6}	$28^{+21\pm5}_{-7\pm0}$
Secondary mass m_2/M_{\odot}	$30.6^{+5.1}_{-4.2}$	$32.7^{+3.1}_{-4.9}$	$31.7^{+4.0\pm0.1}_{-4.9\pm1.2}$	$8.3^{+2.5}_{-2.9}$	$8.1^{+2.5}_{-2.1}$	$8.2^{+2.6\pm0.2}_{-2.5\pm0.5}$	15^{+5}_{-6}	16^{+4}_{-6}	$16^{+5\pm0}_{-6\pm1}$
Final mass $M_{\rm f}/{ m M}_{\odot}$	$67.8^{+4.0}_{-3.6}$	$67.9^{+3.2}_{-2.9}$	$67.8^{+3.7\pm0.6}_{-3.3\pm0.7}$	$22.5_{-1.4}^{+8.2}$	$22.8^{+5.3}_{-1.6}$	$22.6^{+6.7\pm2.2}_{-1.5\pm0.1}$	43_{-4}^{+17}	42^{+13}_{-2}	$42^{+16\pm 5}_{-3\pm 0}$
Source frame	2.0	,			110	110 - 011		-	0-20
Total mass $M^{ m source}/ m M_{\odot}$	$65.5_{-3.9}^{+4.4}$	$65.1^{+3.6}_{-3.1}$	$65.3^{+4.1\pm1.0}_{-3.4\pm0.3}$	$21.6^{+7.4}_{-1.6}$	$21.9^{+4.7}_{-1.7}$	$21.8^{+5.9\pm2.0}_{-1.7\pm0.1}$	38^{+15}_{-5}	37^{+11}_{-4}	$37^{+13\pm4}_{-4\pm0}$
Chirp mass $\mathcal{M}^{\text{source}}/M_{\odot}$	$28.1^{+2.1}_{-1.6}$	$28.1^{+1.6}_{-1.4}$	$28.1^{+1.8\pm0.4}_{-1.5\pm0.2}$	$8.87\substack{+0.35 \\ -0.28}$	$8.90\substack{+0.31\\-0.27}$	$8.88^{+0.33\pm0.01}_{-0.28\pm0.04}$	$15.2^{+1.5}_{-1.1}$	$15.0^{+1.3}_{-1.0}$	$15.1^{+1.4\pm0.3}_{-1.1\pm0.0}$
Primary mass $m_1^{ m source}/{ m M}_{\odot}$	$37.0^{+4.9}_{-4.4}$	$35.3^{+5.1}_{-3.1}$	$36.2^{+5.2\pm1.4}_{-3.8\pm0.4}$	$14.0^{+10.0}_{-3.5}$	$14.5_{-3.7}^{+6.6}$	$14.2^{+8.3\pm2.4}_{-3.7\pm0.2}$	24^{+19}_{-7}	23^{+16}_{-5}	$23^{+18\pm5}_{-6\pm0}$
Secondary mass $m_2^{\rm source}/{ m M}_{\odot}$	$28.3^{+4.6}_{-3.9}$	$29.9^{+3.0}_{-4.5}$	$29.1^{+3.7\pm0.0}_{-4.4\pm0.9}$	$7.5^{+2.3}_{-2.6}$	$7.4^{+2.3}_{-2.0}$	$7.5^{+2.3\pm0.2}_{-2.3\pm0.4}$	13^{+4}_{-5}	14_{-5}^{+4}	$13^{+4\pm0}_{-5\pm0}$
Final mass $M_{ m f}^{ m source}/{ m M}_{\odot}$	$62.5^{+3.9}_{-3.5}$	$62.1_{-2.8}^{+3.3}$	$62.3^{+3.7\pm0.9}_{-3.1\pm0.2}$	$20.6^{+7.6}_{-1.6}$	$20.9^{+4.8}_{-1.8}$	$20.8^{+6.1\pm2.0}_{-1.7\pm0.1}$	36^{+15}_{-4}	35^{+11}_{-3}	$35^{+14\pm4}_{-4\pm0}$
Energy radiated $E_{\rm rad}/({\rm M}_{\odot}c^2)$	$2.98^{+0.55}_{-0.40}$	$3.02\substack{+0.36\\-0.36}$	$3.00^{+0.47\pm0.13}_{-0.39\pm0.07}$	$1.02\substack{+0.09\\-0.24}$	$0.99\substack{+0.11\\-0.17}$	$1.00^{+0.10\pm0.01}_{-0.20\pm0.03}$	$1.48^{+0.39}_{-0.41}$	$1.51_{-0.44}^{+0.29}$	$1.50^{+0.33\pm0.05}_{-0.43\pm0.01}$
Mass ratio q	$0.77\substack{+0.20\\-0.18}$	$0.85\substack{+0.13\\-0.21}$	$0.81^{+0.17\pm0.02}_{-0.20\pm0.04}$	$0.54\substack{+0.40\\-0.33}$	$0.51\substack{+0.39 \\ -0.25}$	$0.52^{+0.40\pm0.03}_{-0.29\pm0.04}$	$0.53\substack{+0.42 \\ -0.34}$	$0.60\substack{+0.35\\-0.37}$	$0.57^{+0.38\pm0.01}_{-0.37\pm0.04}$
Effective inspiral spin $\chi_{\rm eff}$	$-0.08\substack{+0.17\\-0.14}$	$-0.05\substack{+0.11\\-0.12}$	$-0.06^{+0.14\pm0.02}_{-0.14\pm0.04}$	$0.21\substack{+0.24 \\ -0.11}$	$0.22\substack{+0.15\\-0.08}$	$0.21^{+0.20\pm0.07}_{-0.10\pm0.03}$	$0.06\substack{+0.31\\-0.24}$	$0.01\substack{+0.26 \\ -0.17}$	$0.03^{+0.31\pm0.08}_{-0.20\pm0.02}$
Primary spin magnitude a_1	$0.33\substack{+0.39\\-0.29}$	$0.30\substack{+0.54 \\ -0.27}$	$0.32^{+0.47\pm0.10}_{-0.29\pm0.01}$	$0.42\substack{+0.35\\-0.37}$	$0.55\substack{+0.35 \\ -0.42}$	$0.49^{+0.37\pm0.11}_{-0.42\pm0.07}$	$0.31\substack{+0.46 \\ -0.27}$	$0.31\substack{+0.50 \\ -0.28}$	$0.31^{+0.48\pm0.03}_{-0.28\pm0.00}$
Secondary spin magnitude a_2	$0.62\substack{+0.35\\-0.54}$	$0.36\substack{+0.53\\-0.33}$	$0.48^{+0.47\pm0.08}_{-0.43\pm0.03}$	$0.51\substack{+0.44 \\ -0.46}$	$0.52\substack{+0.42 \\ -0.47}$	$0.52^{+0.43\pm0.01}_{-0.47\pm0.00}$	$0.49\substack{+0.45\\-0.44}$	$0.42\substack{+0.50\\-0.38}$	$0.45^{+0.48\pm0.02}_{-0.41\pm0.01}$
Final spin $a_{\rm f}$	$0.68\substack{+0.05 \\ -0.07}$	$0.68\substack{+0.06\\-0.05}$	$0.68^{+0.05\pm0.01}_{-0.06\pm0.02}$	$0.73\substack{+0.05 \\ -0.06}$	$0.75\substack{+0.07 \\ -0.05}$	$0.74^{+0.06\pm0.03}_{-0.06\pm0.03}$	$0.65\substack{+0.09\\-0.10}$	$0.66\substack{+0.08\\-0.10}$	$0.66^{+0.09\pm0.00}_{-0.10\pm0.02}$
Luminosity distance $D_{\rm L}/{\rm Mpc}$	400^{+160}_{-180}	440^{+140}_{-170}	$420^{+150\pm20}_{-180\pm40}$	450^{+180}_{-210}	440^{+170}_{-180}	$440^{+180\pm20}_{-190\pm10}$	1000^{+540}_{-490}	1030^{+480}_{-480}	$1020^{+500\pm20}_{-490\pm40}$
Source redshift z	$0.086\substack{+0.031\\-0.036}$	$0.094\substack{+0.027\\-0.034}$	$0.090^{+0.029\pm0.003}_{-0.036\pm0.008}$	$0.096\substack{+0.035\\-0.042}$	$0.092\substack{+0.033\\-0.037}$	$0.094^{+0.035\pm0.004}_{-0.039\pm0.001}$	$0.198\substack{+0.091\\-0.092}$	$0.204\substack{+0.082\\-0.088}$	$0.201^{+0.086\pm0.003}_{-0.091\pm0.008}$
Upper bound									
Primary spin magnitude a_1	0.62	0.73	0.67 ± 0.09	0.68	0.83	0.77 ± 0.12	0.64	0.69	0.67 ± 0.04
Secondary spin magnitude a_2	0.93	0.80	0.90 ± 0.12	0.90	0.89	0.90 ± 0.01	0.89	0.85	0.87 ± 0.04
Lower bound									
Mass ratio q	0.62	0.68	0.65 ± 0.05	0.25	0.30	0.28 ± 0.04	0.22	0.28	0.24 ± 0.05
Log Bayes factor $\ln \mathcal{B}_{s/n}$	287.7 ± 0.1	289.8 ± 0.3		59.5 ± 0.1	60.2 ± 0.2		22.8 ± 0.2	23.0 ± 0.1	• • •
Information criterion DIC	32977.2 ± 0.3	32973.1 ± 0.1		34296.4 ± 0.2	34295.1 ± 0.1		94695.8 ± 0.0	94692.9 ± 0.0	

$M \ M_1 \ M_2$

	GW150914				GW151226			LVT151012		
	EOBNR	IMRPhenom	Overall	EOBNR	IMRPhenom	Overall	EOBNR	IMRPhenom	Overall	
Detector frame										
Total mass $M/{ m M}_{\odot}$	$71.0^{+4.6}_{-4.0}$	$71.2^{+3.5}_{-3.2}$	$71.1^{+4.1\pm0.7}_{-3.6\pm0.8}$	$23.6^{+8.0}_{-1.3}$	$23.8^{+5.1}_{-1.5}$	$23.7^{+6.5\pm2.2}_{-1.4\pm0.1}$	45^{+17}_{-4}	44^{+12}_{-3}	$44^{+16\pm5}_{-3\pm0}$	
Chirp mass \mathcal{M}/M_{\odot}	$30.4^{+2.3}_{-1.6}$	$30.7^{+1.5}_{-1.5}$	$30.6^{+1.9\pm0.3}_{-1.6\pm0.4}$	$9.71\substack{+0.08 \\ -0.07}$	$9.72\substack{+0.06\\-0.06}$	$9.72^{+0.07\pm0.01}_{-0.06\pm0.01}$	$18.1_{-0.9}^{+1.3}$	$18.1\substack{+0.8 \\ -0.8}$	$18.1^{+1.0\pm0.5}_{-0.8\pm0.1}$	
Primary mass m_1/M_{\odot}	$40.2^{+5.2}_{-4.8}$	$38.5^{+5.4}_{-3.3}$	$39.4^{+5.4\pm1.3}_{-4.1\pm0.2}$	$15.3^{+10.8}_{-3.8}$	$15.8^{+7.2}_{-4.0}$	$15.6^{+9.0\pm2.6}_{-4.0\pm0.2}$	29^{+23}_{-8}	27^{+19}_{-6}	$28^{+21\pm5}_{-7\pm0}$	
Secondary mass m_2/M_{\odot}	$30.6^{+5.1}_{-4.2}$	$32.7^{+3.1}_{-4.9}$	$31.7^{+4.0\pm0.1}_{-4.9\pm1.2}$	$8.3^{+2.5}_{-2.9}$	$8.1^{+2.5}_{-2.1}$	$8.2^{+2.6\pm0.2}_{-2.5\pm0.5}$	15^{+5}_{-6}	16^{+4}_{-6}	$16^{+5\pm0}_{-6\pm1}$	
Final mass $M_{\rm f}/{ m M}_{\odot}$	$67.8^{+4.0}_{-3.6}$	$67.9^{+3.2}_{-2.9}$	$67.8^{+3.7\pm0.6}_{-3.3\pm0.7}$	$22.5_{-1.4}^{+8.2}$	$22.8^{+5.3}_{-1.6}$	$22.6^{+6.7\pm2.2}_{-1.5\pm0.1}$	43_{-4}^{+17}	42^{+13}_{-2}	$42^{+16\pm5}_{-3\pm0}$	
Source frame			0.02017		110			-	0_0	
Total mass $M^{ m source}/ m M_{\odot}$	$65.5_{-3.9}^{+4.4}$	$65.1^{+3.6}_{-3.1}$	$65.3^{+4.1\pm1.0}_{-3.4\pm0.3}$	$21.6^{+7.4}_{-1.6}$	$21.9^{+4.7}_{-1.7}$	$21.8^{+5.9\pm2.0}_{-1.7\pm0.1}$	38^{+15}_{-5}	37^{+11}_{-4}	$37^{+13\pm4}_{-4\pm0}$	
Chirp mass $\mathcal{M}^{\text{source}}/M_{\odot}$	$28.1^{+2.1}_{-1.6}$	$28.1^{+1.6}_{-1.4}$	$28.1^{+1.8\pm0.4}_{-1.5\pm0.2}$	$8.87^{+0.35}_{-0.28}$	$8.90^{+0.31}_{-0.27}$	$8.88^{+0.33\pm0.01}_{-0.28\pm0.04}$	$15.2^{+1.5}_{-1.1}$	$15.0^{+1.3}_{-1.0}$	$15.1^{+1.4\pm0.3}_{-1.1\pm0.0}$	
Primary mass $m_1^{\text{source}}/M_{\odot}$	$37.0_{-4.4}^{+4.9}$	$35.3^{+5.1}_{-3.1}$	$36.2^{+5.2\pm1.4}_{-3.8\pm0.4}$	$14.0^{+10.0}_{-3.5}$	$14.5_{-3.7}^{+6.6}$	$14.2^{+8.3\pm2.4}_{-3.7\pm0.2}$	24^{+19}_{-7}	23^{+16}_{-5}	$23^{+18\pm5}_{-6\pm0}$	
Secondary mass $m_2^{\text{source}}/\text{M}_{\odot}$	$28.3^{+4.6}_{-3.9}$	$29.9^{+3.0}_{-4.5}$	$29.1^{+3.7\pm0.0}_{-4.4\pm0.9}$	$7.5^{+2.3}_{-2.6}$	$7.4^{+2.3}_{-2.0}$	$7.5^{+2.3\pm0.2}_{-2.3\pm0.4}$	13^{+4}_{-5}	14_{-5}^{+4}	$13^{+4\pm0}_{-5\pm0}$	
Final mass $M_{ m f}^{ m source}/{ m M}_{\odot}$	$62.5^{+3.9}_{-3.5}$	$62.1^{+3.3}_{-2.8}$	$62.3^{+3.7\pm0.9}_{-3.1\pm0.2}$	$20.6^{+7.6}_{-1.6}$	$20.9^{+4.8}_{-1.8}$	$20.8^{+6.1\pm2.0}_{-1.7\pm0.1}$	36^{+15}_{-4}	35^{+11}_{-3}	$35^{+14\pm4}_{-4\pm0}$	
Energy radiated $E_{\rm rad}/({\rm M}_{\odot}c^2)$	$2.98^{+0.55}_{-0.40}$	$3.02^{+0.36}_{-0.36}$	$3.00^{+0.47\pm0.13}_{-0.39\pm0.07}$	$1.02^{+0.09}_{-0.24}$	$0.99^{+0.11}_{-0.17}$	$1.00^{+0.10\pm0.01}_{-0.20\pm0.03}$	$1.48^{+0.39}_{-0.41}$	$1.51_{-0.44}^{+0.29}$	$1.50^{+0.33\pm0.05}_{-0.43\pm0.01}$	
Mass ratio q	$0.77^{+0.20}_{-0.18}$	$0.85^{+0.13}_{-0.21}$	$0.81^{+0.17\pm0.02}_{-0.20\pm0.04}$	$0.54_{-0.33}^{+0.40}$	$0.51\substack{+0.39\\-0.25}$	$0.52^{+0.40\pm0.03}_{-0.29\pm0.04}$	$0.53^{+0.42}_{-0.34}$	$0.60^{+0.35}_{-0.37}$	$0.57^{+0.38\pm0.01}_{-0.37\pm0.04}$	
Effective inspiral spin $\chi_{\rm eff}$	$-0.08\substack{+0.17\\-0.14}$	$-0.05^{+0.11}_{-0.12}$	$-0.06^{+0.14\pm0.02}_{-0.14\pm0.04}$	$0.21\substack{+0.24\\-0.11}$	$0.22^{+0.15}_{-0.08}$	$0.21^{+0.20\pm0.07}_{-0.10\pm0.03}$	$0.06^{+0.31}_{-0.24}$	$0.01\substack{+0.26\\-0.17}$	$0.03^{+0.31\pm0.08}_{-0.20\pm0.02}$	
Primary spin magnitude a_1	$0.33\substack{+0.39\\-0.29}$	$0.30\substack{+0.54\\-0.27}$	$0.32^{+0.47\pm0.10}_{-0.29\pm0.01}$	$0.42_{-0.37}^{+0.35}$	$0.55^{+0.35}_{-0.42}$	$0.49^{+0.37\pm0.11}_{-0.42\pm0.07}$	$0.31\substack{+0.46\\-0.27}$	$0.31_{-0.28}^{+0.50}$	$0.31^{+0.48\pm0.03}_{-0.28\pm0.00}$	
Secondary spin magnitude a_2	$0.62\substack{+0.35\\-0.54}$	$0.36^{+0.53}_{-0.33}$	$0.48^{+0.47\pm0.08}_{-0.43\pm0.03}$	$0.51_{-0.46}^{+0.44}$	$0.52\substack{+0.42 \\ -0.47}$	$0.52^{+0.43\pm0.01}_{-0.47\pm0.00}$	$0.49\substack{+0.45\\-0.44}$	$0.42^{+0.50}_{-0.38}$	$0.45^{+0.48\pm0.02}_{-0.41\pm0.01}$	
Final spin $a_{\rm f}$	$0.68\substack{+0.05\\-0.07}$	$0.68\substack{+0.06\\-0.05}$	$0.68^{+0.05\pm0.01}_{-0.06\pm0.02}$	$0.73_{-0.06}^{+0.05}$	$0.75\substack{+0.07\\-0.05}$	$0.74^{+0.06\pm0.03}_{-0.06\pm0.03}$	$0.65\substack{+0.09\\-0.10}$	$0.66\substack{+0.08\\-0.10}$	$0.66^{+0.09\pm0.00}_{-0.10\pm0.02}$	
Luminosity distance $D_{\rm L}/{\rm Mpc}$	400^{+160}_{-180}	440^{+140}_{-170}	$420^{+150\pm20}_{-180\pm40}$	450^{+180}_{-210}	440^{+170}_{-180}	$440^{+180\pm20}_{-190\pm10}$	1000^{+540}_{-490}	1030_{-480}^{+480}	$1020^{+500\pm20}_{-490\pm40}$	
Source redshift z	$0.086\substack{+0.031\\-0.036}$	$0.094\substack{+0.027\\-0.034}$	$0.090^{+0.029\pm0.003}_{-0.036\pm0.008}$	$0.096\substack{+0.035\\-0.042}$	$0.092\substack{+0.033\\-0.037}$	$0.094^{+0.035\pm0.004}_{-0.039\pm0.001}$	$0.198\substack{+0.091\\-0.092}$	$0.204\substack{+0.082\\-0.088}$	$0.201^{+0.086\pm0.003}_{-0.091\pm0.008}$	
Upper bound										
Primary spin magnitude a_1	0.62	0.73	0.67 ± 0.09	0.68	0.83	0.77 ± 0.12	0.64	0.69	0.67 ± 0.04	
Secondary spin magnitude a_2	0.93	0.80	0.90 ± 0.12	0.90	0.89	0.90 ± 0.01	0.89	0.85	0.87 ± 0.04	
Lower bound										
Mass ratio q	0.62	0.68	0.65 ± 0.05	0.25	0.30	0.28 ± 0.04	0.22	0.28	0.24 ± 0.05	
Log Bayes factor $\ln \mathcal{B}_{s/n}$	287.7 ± 0.1	289.8 ± 0.3		59.5 ± 0.1	60.2 ± 0.2		22.8 ± 0.2	23.0 ± 0.1		
Information criterion DIC	32977.2 ± 0.3	32973.1 ± 0.1		34296.4 ± 0.2	34295.1 ± 0.1		94695.8 ± 0.0	94692.9 ± 0.0	•••	

$M \ M_1 \ M_2 \ \ 65 \ \ 36 \ \ 29$

		GW150914			GW151226		LVT151012			
	EOBNR	IMRPhenom	Overall	EOBNR	IMRPhenom	Overall	EOBNR	IMRPhenom	Overall	
Detector frame										
Total mass $M/{ m M}_{\odot}$	$71.0^{+4.6}_{-4.0}$	$71.2^{+3.5}_{-3.2}$	$71.1^{+4.1\pm0.7}_{-3.6\pm0.8}$	$23.6^{+8.0}_{-1.3}$	$23.8^{+5.1}_{-1.5}$	$23.7^{+6.5\pm2.2}_{-1.4\pm0.1}$	45_{-4}^{+17}	44^{+12}_{-3}	$44^{+16\pm 5}_{-3\pm 0}$	
Chirp mass \mathcal{M}/M_{\odot}	$30.4^{+2.3}_{-1.6}$	$30.7^{+1.5}_{-1.5}$	$30.6^{+1.9\pm0.3}_{-1.6\pm0.4}$	$9.71\substack{+0.08 \\ -0.07}$	$9.72\substack{+0.06\\-0.06}$	$9.72^{+0.07\pm0.01}_{-0.06\pm0.01}$	$18.1^{+1.3}_{-0.9}$	$18.1\substack{+0.8\\-0.8}$	$18.1^{+1.0\pm0.5}_{-0.8\pm0.1}$	
Primary mass m_1/M_{\odot}	$40.2^{+5.2}_{-4.8}$	$38.5^{+5.4}_{-3.3}$	$39.4^{+5.4\pm1.3}_{-4.1\pm0.2}$	$15.3^{+10.8}_{-3.8}$	$15.8^{+7.2}_{-4.0}$	$15.6^{+9.0\pm2.6}_{-4.0\pm0.2}$	29^{+23}_{-8}	27^{+19}_{-6}	$28^{+21\pm5}_{-7\pm0}$	
Secondary mass m_2/M_{\odot}	$30.6^{+5.1}_{-4.2}$	$32.7^{+3.1}_{-4.9}$	$31.7^{+4.0\pm0.1}_{-4.9\pm1.2}$	$8.3^{+2.5}_{-2.9}$	$8.1^{+2.5}_{-2.1}$	$8.2^{+2.6\pm0.2}_{-2.5\pm0.5}$	15^{+5}_{-6}	16_{-6}^{+4}	$16^{+5\pm0}_{-6\pm1}$	
Final mass $M_{\rm f}/{ m M}_{\odot}$	$67.8^{+4.0}_{-3.6}$	$67.9^{+3.2}_{-2.9}$	$67.8^{+3.7\pm0.6}_{-3.3\pm0.7}$	$22.5^{+8.2}_{-1.4}$	$22.8^{+5.3}_{-1.6}$	$22.6^{+6.7\pm2.2}_{-1.5\pm0.1}$	43_{-4}^{+17}	42^{+13}_{-2}	$42^{+16\pm5}_{-3\pm0}$	
Source frame	5.0	2.7	0.0±0.7		1.0	1.0 ±0.1	·	_	520	
Total mass $M^{ m source}/ m M_{\odot}$	$65.5_{-3.9}^{+4.4}$	$65.1^{+3.6}_{-3.1}$	$65.3^{+4.1\pm1.0}_{-3.4\pm0.3}$	$21.6^{+7.4}_{-1.6}$	$21.9^{+4.7}_{-1.7}$	$21.8^{+5.9\pm2.0}_{-1.7\pm0.1}$	38^{+15}_{-5}	37^{+11}_{-4}	$37^{+13\pm4}_{-4\pm0}$	
Chirp mass $\mathcal{M}^{ ext{source}}/ ext{M}_{\odot}$	$28.1^{+2.1}_{-1.6}$	$28.1^{+1.6}_{-1.4}$	$28.1^{+1.8\pm0.4}_{-1.5\pm0.2}$	$8.87^{+0.35}_{-0.28}$	$8.90^{+0.31}_{-0.27}$	$8.88^{+0.33\pm0.01}_{-0.28\pm0.04}$	$15.2^{+1.5}_{-1.1}$	$15.0^{+1.3}_{-1.0}$	$15.1^{+1.4\pm0.3}_{-1.1\pm0.0}$	
Primary mass $m_1^{\text{source}}/M_{\odot}$	$37.0^{+4.9}_{-4.4}$	$35.3^{+5.1}_{-3.1}$	$36.2^{+5.2\pm1.4}_{-3.8\pm0.4}$	$14.0^{+10.0}_{-3.5}$	$14.5^{+6.6}_{-3.7}$	$14.2^{+8.3\pm2.4}_{-3.7\pm0.2}$	24^{+19}_{-7}	23^{+16}_{-5}	$23^{+18\pm5}_{-6\pm0}$	
Secondary mass $m_2^{\text{source}}/\text{M}_{\odot}$	$28.3^{+4.6}_{-3.9}$	$29.9^{+3.0}_{-4.5}$	$29.1^{+3.7\pm0.0}_{-4.4\pm0.9}$	$7.5^{+2.3}_{-2.6}$	$7.4^{+2.3}_{-2.0}$	$7.5^{+2.3\pm0.2}_{-2.3\pm0.4}$	13^{+4}_{-5}	14_{-5}^{+4}	$13^{+4\pm0}_{-5\pm0}$	
Final mass $M_{ m f}^{ m source}/{ m M}_{\odot}$	$62.5^{+3.9}_{-3.5}$	$62.1^{+3.3}_{-2.8}$	$62.3^{+3.7\pm0.9}_{-3.1\pm0.2}$	$20.6^{+7.6}_{-1.6}$	$20.9^{+4.8}_{-1.8}$	$20.8^{+6.1\pm2.0}_{-1.7\pm0.1}$	36_{-4}^{+15}	35^{+11}_{-3}	$35^{+14\pm4}_{-4\pm0}$	
Energy radiated $E_{\rm rad}/({\rm M}_{\odot}c^2)$	$2.98^{+0.55}_{-0.40}$	$3.02^{+0.36}_{-0.36}$	$3.00^{+0.47\pm0.13}_{-0.39\pm0.07}$	$1.02^{+0.09}_{-0.24}$	$0.99^{+0.11}_{-0.17}$	$1.00^{+0.10\pm0.01}_{-0.20\pm0.03}$	$1.48^{+0.39}_{-0.41}$	$1.51_{-0.44}^{+0.29}$	$1.50^{+0.33\pm0.05}_{-0.43\pm0.01}$	
Mass ratio q	$0.77^{+0.20}_{-0.18}$	$0.85^{+0.13}_{-0.21}$	$0.81^{+0.17\pm0.02}_{-0.20\pm0.04}$	$0.54_{-0.33}^{+0.40}$	$0.51^{+0.39}_{-0.25}$	$0.52^{+0.40\pm0.03}_{-0.29\pm0.04}$	$0.53^{+0.42}_{-0.34}$	$0.60^{+0.35}_{-0.37}$	$0.57^{+0.38\pm0.01}_{-0.37\pm0.04}$	
Effective inspiral spin χ_{eff}	$-0.08^{+0.17}_{-0.14}$	$-0.05^{+0.11}_{-0.12}$	$-0.06^{+0.14\pm0.02}_{-0.14\pm0.04}$	$0.21\substack{+0.24\\-0.11}$	$0.22^{+0.15}_{-0.08}$	$0.21^{+0.20\pm0.07}_{-0.10\pm0.03}$	$0.06^{+0.31}_{-0.24}$	$0.01^{+0.26}_{-0.17}$	$0.03^{+0.31\pm0.08}_{-0.20\pm0.02}$	
Primary spin magnitude a_1	$0.33\substack{+0.39\\-0.29}$	$0.30\substack{+0.54\\-0.27}$	$0.32^{+0.47\pm0.10}_{-0.29\pm0.01}$	$0.42_{-0.37}^{+0.35}$	$0.55^{+0.35}_{-0.42}$	$0.49^{+0.37\pm0.11}_{-0.42\pm0.07}$	$0.31\substack{+0.46 \\ -0.27}$	$0.31_{-0.28}^{+0.50}$	$0.31^{+0.48\pm0.03}_{-0.28\pm0.00}$	
Secondary spin magnitude a_2	$0.62^{+0.35}_{-0.54}$	$0.36^{+0.53}_{-0.33}$	$0.48^{+0.47\pm0.08}_{-0.43\pm0.03}$	$0.51_{-0.46}^{+0.44}$	$0.52^{+0.42}_{-0.47}$	$0.52^{+0.43\pm0.01}_{-0.47\pm0.00}$	$0.49\substack{+0.45\\-0.44}$	$0.42^{+0.50}_{-0.38}$	$0.45^{+0.48\pm0.02}_{-0.41\pm0.01}$	
Final spin $a_{\rm f}$	$0.68\substack{+0.05\\-0.07}$	$0.68\substack{+0.06\\-0.05}$	$0.68^{+0.05\pm0.01}_{-0.06\pm0.02}$	$0.73_{-0.06}^{+0.05}$	$0.75\substack{+0.07\\-0.05}$	$0.74^{+0.06\pm0.03}_{-0.06\pm0.03}$	$0.65\substack{+0.09\\-0.10}$	$0.66\substack{+0.08\\-0.10}$	$0.66^{+0.09\pm0.00}_{-0.10\pm0.02}$	
Luminosity distance $D_{\rm L}/{\rm Mpc}$	400^{+160}_{-180}	440^{+140}_{-170}	$420^{+150\pm20}_{-180\pm40}$	450^{+180}_{-210}	440^{+170}_{-180}	$440^{+180\pm20}_{-190\pm10}$	1000^{+540}_{-490}	$1030\substack{+480 \\ -480}$	$1020^{+500\pm20}_{-490\pm40}$	
Source redshift z	$0.086\substack{+0.031\\-0.036}$	$0.094\substack{+0.027\\-0.034}$	$0.090^{+0.029\pm0.003}_{-0.036\pm0.008}$	$0.096\substack{+0.035\\-0.042}$	$0.092\substack{+0.033\\-0.037}$	$0.094^{+0.035\pm0.004}_{-0.039\pm0.001}$	$0.198\substack{+0.091\\-0.092}$	$0.204\substack{+0.082\\-0.088}$	$0.201^{+0.086\pm0.003}_{-0.091\pm0.008}$	
Upper bound										
Primary spin magnitude a_1	0.62	0.73	0.67 ± 0.09	0.68	0.83	0.77 ± 0.12	0.64	0.69	0.67 ± 0.04	
Secondary spin magnitude a_2	0.93	0.80	0.90 ± 0.12	0.90	0.89	0.90 ± 0.01	0.89	0.85	0.87 ± 0.04	
Lower bound										
Mass ratio q	0.62	0.68	0.65 ± 0.05	0.25	0.30	0.28 ± 0.04	0.22	0.28	0.24 ± 0.05	
Log Bayes factor $\ln \mathcal{B}_{s/n}$	287.7 ± 0.1	289.8 ± 0.3		59.5 ± 0.1	60.2 ± 0.2		22.8 ± 0.2	23.0 ± 0.1	• • •	
Information criterion DIC	32977.2 ± 0.3	32973.1 ± 0.1		34296.4 ± 0.2	34295.1 ± 0.1		94695.8 ± 0.0	94692.9 ± 0.0		

$M M_1 M_2 \quad 65 \ 36 \ 29 \qquad 22 \ 14 \ 7.5$

		GW150914			GW151226		LVT151012			
	EOBNR	IMRPhenom	Overall	EOBNR	IMRPhenom	Overall	EOBNR	IMRPhenom	Overall	
Detector frame										
Total mass $M/{ m M}_{\odot}$	$71.0^{+4.6}_{-4.0}$	$71.2^{+3.5}_{-3.2}$	$71.1^{+4.1\pm0.7}_{-3.6\pm0.8}$	$23.6^{+8.0}_{-1.3}$	$23.8^{+5.1}_{-1.5}$	$23.7^{+6.5\pm2.2}_{-1.4\pm0.1}$	45^{+17}_{-4}	44^{+12}_{-3}	$44^{+16\pm 5}_{-3\pm 0}$	
Chirp mass \mathcal{M}/M_{\odot}	$30.4^{+2.3}_{-1.6}$	$30.7^{+1.5}_{-1.5}$	$30.6^{+1.9\pm0.3}_{-1.6\pm0.4}$	$9.71\substack{+0.08 \\ -0.07}$	$9.72\substack{+0.06\\-0.06}$	$9.72^{+0.07\pm0.01}_{-0.06\pm0.01}$	$18.1^{+1.3}_{-0.9}$	$18.1\substack{+0.8 \\ -0.8}$	$18.1^{+1.0\pm0.5}_{-0.8\pm0.1}$	
Primary mass m_1/M_{\odot}	$40.2^{+5.2}_{-4.8}$	$38.5^{+5.4}_{-3.3}$	$39.4^{+5.4\pm1.3}_{-4.1\pm0.2}$	$15.3^{+10.8}_{-3.8}$	$15.8^{+7.2}_{-4.0}$	$15.6^{+9.0\pm2.6}_{-4.0\pm0.2}$	29^{+23}_{-8}	27^{+19}_{-6}	$28^{+21\pm5}_{-7\pm0}$	
Secondary mass $m_2/{ m M}_{\odot}$	$30.6^{+5.1}_{-4.2}$	$32.7^{+3.1}_{-4.9}$	$31.7^{+4.0\pm0.1}_{-4.9\pm1.2}$	$8.3^{+2.5}_{-2.9}$	$8.1^{+2.5}_{-2.1}$	$8.2^{+2.6\pm0.2}_{-2.5\pm0.5}$	15^{+5}_{-6}	16^{+4}_{-6}	$16^{+5\pm0}_{-6\pm1}$	
Final mass $M_{ m f}/{ m M}_{\odot}$	$67.8_{-3.6}^{+4.0}$	$67.9^{+3.2}_{-2.9}$	$67.8^{+3.7\pm0.6}_{-3.3\pm0.7}$	$22.5_{-1.4}^{+8.2}$	$22.8^{+5.3}_{-1.6}$	$22.6^{+6.7\pm2.2}_{-1.5\pm0.1}$	43^{+17}_{-4}	42^{+13}_{-2}	$42^{+16\pm5}_{-3\pm0}$	
Source frame										
Total mass $M^{ m source}/ m M_{\odot}$	$65.5_{-3.9}^{+4.4}$	$65.1^{+3.6}_{-3.1}$	$65.3^{+4.1\pm1.0}_{-3.4\pm0.3}$	$21.6^{+7.4}_{-1.6}$	$21.9^{+4.7}_{-1.7}$	$21.8^{+5.9\pm2.0}_{-1.7\pm0.1}$	38^{+15}_{-5}	37^{+11}_{-4}	$37^{+13\pm4}_{-4\pm0}$	
Chirp mass $\mathcal{M}^{\text{source}}/M_{\odot}$	$28.1^{+2.1}_{-1.6}$	$28.1^{+1.6}_{-1.4}$	$28.1^{+1.8\pm0.4}_{-1.5\pm0.2}$	$8.87\substack{+0.35 \\ -0.28}$	$8.90\substack{+0.31\\-0.27}$	$8.88^{+0.33\pm0.01}_{-0.28\pm0.04}$	$15.2^{+1.5}_{-1.1}$	$15.0^{+1.3}_{-1.0}$	$15.1^{+1.4\pm0.3}_{-1.1\pm0.0}$	
Primary mass $m_1^{ m source}/{ m M}_{\odot}$	$37.0^{+4.9}_{-4.4}$	$35.3^{+5.1}_{-3.1}$	$36.2^{+5.2\pm1.4}_{-3.8\pm0.4}$	$14.0^{+10.0}_{-3.5}$	$14.5_{-3.7}^{+6.6}$	$14.2^{+8.3\pm2.4}_{-3.7\pm0.2}$	24^{+19}_{-7}	23^{+16}_{-5}	$23^{+18\pm5}_{-6\pm0}$	
Secondary mass $m_2^{ m source}/{ m M}_{\odot}$	$28.3^{+4.6}_{-3.9}$	$29.9^{+3.0}_{-4.5}$	$29.1^{+3.7\pm0.0}_{-4.4\pm0.9}$	$7.5^{+2.3}_{-2.6}$	$7.4^{+2.3}_{-2.0}$	$7.5^{+2.3\pm0.2}_{-2.3\pm0.4}$	13^{+4}_{-5}	14^{+4}_{-5}	$13^{+4\pm0}_{-5\pm0}$	
Final mass $M_{ m f}^{ m source}/{ m M}_{\odot}$	$62.5^{+3.9}_{-3.5}$	$62.1_{-2.8}^{+3.3}$	$62.3^{+3.7\pm0.9}_{-3.1\pm0.2}$	$20.6^{+7.6}_{-1.6}$	$20.9^{+4.8}_{-1.8}$	$20.8^{+6.1\pm2.0}_{-1.7\pm0.1}$	36^{+15}_{-4}	35^{+11}_{-3}	$35^{+14\pm4}_{-4\pm0}$	
Energy radiated $E_{\rm rad}/({\rm M}_{\odot}c^2)$	$2.98^{+0.55}_{-0.40}$	$3.02\substack{+0.36\\-0.36}$	$3.00^{+0.47\pm0.13}_{-0.39\pm0.07}$	$1.02^{+0.09}_{-0.24}$	$0.99\substack{+0.11\\-0.17}$	$1.00^{+0.10\pm0.01}_{-0.20\pm0.03}$	$1.48_{-0.41}^{+0.39}$	$1.51_{-0.44}^{+0.29}$	$1.50^{+0.33\pm0.05}_{-0.43\pm0.01}$	
Mass ratio q	$0.77\substack{+0.20 \\ -0.18}$	$0.85\substack{+0.13 \\ -0.21}$	$0.81^{+0.17\pm0.02}_{-0.20\pm0.04}$	$0.54\substack{+0.40\\-0.33}$	$0.51\substack{+0.39 \\ -0.25}$	$0.52^{+0.40\pm0.03}_{-0.29\pm0.04}$	$0.53\substack{+0.42 \\ -0.34}$	$0.60\substack{+0.35\\-0.37}$	$0.57^{+0.38\pm0.01}_{-0.37\pm0.04}$	
Effective inspiral spin χ_{eff}	$-0.08\substack{+0.17\\-0.14}$	$-0.05\substack{+0.11\\-0.12}$	$-0.06^{+0.14\pm0.02}_{-0.14\pm0.04}$	$0.21\substack{+0.24 \\ -0.11}$	$0.22\substack{+0.15\\-0.08}$	$0.21^{+0.20\pm0.07}_{-0.10\pm0.03}$	$0.06\substack{+0.31\\-0.24}$	$0.01\substack{+0.26 \\ -0.17}$	$0.03^{+0.31\pm0.08}_{-0.20\pm0.02}$	
Primary spin magnitude a_1	$0.33\substack{+0.39\\-0.29}$	$0.30\substack{+0.54 \\ -0.27}$	$0.32^{+0.47\pm0.10}_{-0.29\pm0.01}$	$0.42^{+0.35}_{-0.37}$	$0.55\substack{+0.35 \\ -0.42}$	$0.49^{+0.37\pm0.11}_{-0.42\pm0.07}$	$0.31\substack{+0.46 \\ -0.27}$	$0.31\substack{+0.50 \\ -0.28}$	$0.31^{+0.48\pm0.03}_{-0.28\pm0.00}$	
Secondary spin magnitude a_2	$0.62\substack{+0.35\\-0.54}$	$0.36\substack{+0.53\\-0.33}$	$0.48^{+0.47\pm0.08}_{-0.43\pm0.03}$	$0.51\substack{+0.44 \\ -0.46}$	$0.52\substack{+0.42 \\ -0.47}$	$0.52^{+0.43\pm0.01}_{-0.47\pm0.00}$	$0.49\substack{+0.45\\-0.44}$	$0.42\substack{+0.50 \\ -0.38}$	$0.45^{+0.48\pm0.02}_{-0.41\pm0.01}$	
Final spin $a_{\rm f}$	$0.68\substack{+0.05\\-0.07}$	$0.68\substack{+0.06\\-0.05}$	$0.68^{+0.05\pm0.01}_{-0.06\pm0.02}$	$0.73\substack{+0.05 \\ -0.06}$	$0.75\substack{+0.07 \\ -0.05}$	$0.74^{+0.06\pm0.03}_{-0.06\pm0.03}$	$0.65\substack{+0.09 \\ -0.10}$	$0.66\substack{+0.08\\-0.10}$	$0.66^{+0.09\pm0.00}_{-0.10\pm0.02}$	
Luminosity distance $D_{\rm L}/{\rm Mpc}$	400^{+160}_{-180}	440^{+140}_{-170}	$420^{+150\pm20}_{-180\pm40}$	450^{+180}_{-210}	440^{+170}_{-180}	$440^{+180\pm20}_{-190\pm10}$	1000^{+540}_{-490}	$1030\substack{+480 \\ -480}$	$1020^{+500\pm20}_{-490\pm40}$	
Source redshift z	$0.086\substack{+0.031\\-0.036}$	$0.094\substack{+0.027\\-0.034}$	$0.090^{+0.029\pm0.003}_{-0.036\pm0.008}$	$0.096\substack{+0.035\\-0.042}$	$0.092\substack{+0.033\\-0.037}$	$0.094^{+0.035\pm0.004}_{-0.039\pm0.001}$	$0.198\substack{+0.091\\-0.092}$	$0.204\substack{+0.082\\-0.088}$	$0.201^{+0.086\pm0.003}_{-0.091\pm0.008}$	
Upper bound										
Primary spin magnitude a_1	0.62	0.73	0.67 ± 0.09	0.68	0.83	0.77 ± 0.12	0.64	0.69	0.67 ± 0.04	
Secondary spin magnitude a_2	0.93	0.80	0.90 ± 0.12	0.90	0.89	0.90 ± 0.01	0.89	0.85	0.87 ± 0.04	
Lower bound										
Mass ratio q	0.62	0.68	0.65 ± 0.05	0.25	0.30	0.28 ± 0.04	0.22	0.28	0.24 ± 0.05	
Log Bayes factor $\ln \mathcal{B}_{s/n}$	287.7 ± 0.1	289.8 ± 0.3		59.5 ± 0.1	60.2 ± 0.2		22.8 ± 0.2	23.0 ± 0.1		
Information criterion DIC	32977.2 ± 0.3	32973.1 ± 0.1		34296.4 ± 0.2	34295.1 ± 0.1		94695.8 ± 0.0	94692.9 ± 0.0		

$M M_1 M_2 65 36 29$

22 14 7.5

37 23 13

	GW150914				GW151226		LVT151012			
	EOBNR	IMRPhenom	Overall	EOBNR	IMRPhenom	Overall	EOBNR	IMRPhenom	Overall	
Detector frame										
Total mass M/M_{\odot}	$71.0^{+4.6}_{-4.0}$	$71.2^{+3.5}_{-3.2}$	$71.1^{+4.1\pm0.7}_{-3.6\pm0.8}$	$23.6^{+8.0}_{-1.3}$	$23.8^{+5.1}_{-1.5}$	$23.7^{+6.5\pm2.2}_{-1.4\pm0.1}$	45^{+17}_{-4}	44^{+12}_{-3}	$44^{+16\pm 5}_{-3\pm 0}$	
Chirp mass \mathcal{M}/M_{\odot}	$30.4^{+2.3}_{-1.6}$	$30.7^{+1.5}_{-1.5}$	$30.6^{+1.9\pm0.3}_{-1.6\pm0.4}$	$9.71\substack{+0.08\\-0.07}$	$9.72^{+0.06}_{-0.06}$	$9.72^{+0.07\pm0.01}_{-0.06\pm0.01}$	$18.1^{+1.3}_{-0.9}$	$18.1^{+0.8}_{-0.8}$	$18.1^{+1.0\pm0.5}_{-0.8\pm0.1}$	
Primary mass m_1/M_{\odot}	$40.2^{+5.2}_{-4.8}$	$38.5^{+5.4}_{-3.3}$	$39.4^{+5.4\pm1.3}_{-4.1\pm0.2}$	$15.3^{+10.8}_{-3.8}$	$15.8^{+7.2}_{-4.0}$	$15.6^{+9.0\pm2.6}_{-4.0\pm0.2}$	29^{+23}_{-8}	27^{+19}_{-6}	$28^{+21\pm5}_{-7\pm0}$	
Secondary mass m_2/M_{\odot}	$30.6^{+5.1}_{-4.2}$	$32.7^{+3.1}_{-4.9}$	$31.7^{+4.0\pm0.1}_{-4.9\pm1.2}$	$8.3^{+2.5}_{-2.9}$	$8.1^{+2.5}_{-2.1}$	$8.2^{+2.6\pm0.2}_{-2.5\pm0.5}$	15^{+5}_{-6}	16^{+4}_{-6}	$16^{+5\pm0}_{-6\pm1}$	
Final mass $M_{\rm f}/{ m M}_{\odot}$	$67.8^{+4.0}_{-3.6}$	$67.9^{+3.2}_{-2.9}$	$67.8^{+3.7\pm0.6}_{-3.3\pm0.7}$	$22.5^{+8.2}_{-1.4}$	$22.8^{+5.3}_{-1.6}$	$22.6^{+6.7\pm2.2}_{-1.5\pm0.1}$	43^{+17}_{-4}	42^{+13}_{-2}	$42^{+16\pm5}_{-3\pm0}$	
Source frame	5.0	2.7	5.5±0.7	1.1	1.0	1.5±0.1	·	2	510	
Total mass $M^{\rm source}/{ m M}_{\odot}$	$65.5^{+4.4}_{-3.9}$	$65.1^{+3.6}_{-3.1}$	$65.3^{+4.1\pm1.0}_{-3.4\pm0.3}$	$21.6^{+7.4}_{-1.6}$	$21.9^{+4.7}_{-1.7}$	$21.8^{+5.9\pm2.0}_{-1.7\pm0.1}$	38^{+15}_{-5}	37^{+11}_{-4}	$37^{+13\pm4}_{-4\pm0}$	
Chirp mass $\mathcal{M}^{source}/M_{\odot}$	$28.1^{+2.1}_{-1.6}$	$28.1^{+1.6}_{-1.4}$	$28.1^{+1.8\pm0.4}_{-1.5\pm0.2}$	$8.87^{+0.35}_{-0.28}$	$8.90^{+0.31}_{-0.27}$	$8.88^{+0.33\pm0.01}_{-0.28\pm0.04}$	$15.2^{+1.5}_{-1.1}$	$15.0^{+1.3}_{-1.0}$	$15.1^{+1.4\pm0.3}_{-1.1\pm0.0}$	
Primary mass $m_1^{\text{source}}/M_{\odot}$	$37.0^{+4.9}_{-4.4}$	$35.3^{+5.1}_{-3.1}$	$36.2^{+5.2\pm1.4}_{-3.8\pm0.4}$	$14.0^{+10.0}_{-3.5}$	$14.5^{+6.6}_{-3.7}$	$14.2^{+8.3\pm2.4}_{-3.7\pm0.2}$	24^{+19}_{-7}	23^{+16}_{-5}	$23^{+18\pm5}_{-6\pm0}$	
Secondary mass $m_2^{\rm source}/{ m M}_{\odot}$	$28.3^{+4.6}_{-3.9}$	$29.9^{+3.0}_{-4.5}$	$29.1^{+3.7\pm0.0}_{-4.4\pm0.9}$	$7.5^{+2.3}_{-2.6}$	$7.4^{+2.3}_{-2.0}$	$7.5^{+2.3\pm0.2}_{-2.3\pm0.4}$	13^{+4}_{-5}	14_{-5}^{+4}	$13^{+4\pm0}_{-5\pm0}$	
Final mass $M_{\rm f}^{\rm source}/{ m M}_{\odot}$	$62.5^{+3.9}_{-3.5}$	$62.1^{+3.3}_{-2.8}$	$62.3^{+3.7\pm0.9}_{-3.1\pm0.2}$	$20.6^{+7.6}_{-1.6}$	$20.9^{+4.8}_{-1.8}$	$20.8^{+6.1\pm2.0}_{-1.7\pm0.1}$	36_{-4}^{+15}	35^{+11}_{-3}	$35^{+14\pm4}_{-4\pm0}$	
Energy radiated $E_{\rm rad}/({\rm M}_{\odot}c^2)$	$2.98^{+0.55}_{-0.40}$	$3.02^{+0.36}_{-0.36}$	$3.00^{+0.47\pm0.13}_{-0.39\pm0.07}$	$1.02^{+0.09}_{-0.24}$	$0.99^{+0.11}_{-0.17}$	$1.00^{+0.10\pm0.01}_{-0.20\pm0.03}$	$1.48^{+0.39}_{-0.41}$	$1.51^{+0.29}_{-0.44}$	$1.50^{+0.33\pm0.05}_{-0.43\pm0.01}$	
Mass ratio q	$0.77^{+0.20}_{-0.18}$	$0.85^{+0.13}_{-0.21}$	$0.81^{+0.17\pm0.02}_{-0.20\pm0.04}$	$0.54^{+0.40}_{-0.33}$	$0.51^{+0.39}_{-0.25}$	$0.52^{+0.40\pm0.03}_{-0.29\pm0.04}$	$0.53^{+0.42}_{-0.34}$	$0.60^{+0.35}_{-0.37}$	$0.57^{+0.38\pm0.01}_{-0.37\pm0.04}$	
Effective inspiral spin $\chi_{\rm eff}$	$-0.08^{+0.17}_{-0.14}$	$-0.05^{+0.11}_{-0.12}$	$-0.06^{+0.14\pm0.02}_{-0.14\pm0.04}$	$0.21_{-0.11}^{+0.24}$	$0.22^{+0.15}_{-0.08}$	$0.21^{+0.20\pm0.07}_{-0.10\pm0.03}$	$0.06^{+0.31}_{-0.24}$	$0.01^{+0.26}_{-0.17}$	$0.03^{+0.31\pm0.08}_{-0.20\pm0.02}$	
Primary spin magnitude a_1	$0.33^{+0.39}_{-0.29}$	$0.30^{+0.54}_{-0.27}$	$0.32^{+0.47\pm0.10}_{-0.29\pm0.01}$	$0.42^{+0.35}_{-0.37}$	$0.55^{+0.35}_{-0.42}$	$0.49^{+0.37\pm0.11}_{-0.42\pm0.07}$	$0.31^{+0.46}_{-0.27}$	$0.31_{-0.28}^{+0.50}$	$0.31^{+0.48\pm0.03}_{-0.28\pm0.00}$	
Secondary spin magnitude a_2	$0.62^{+0.35}_{-0.54}$	$0.36^{+0.53}_{-0.33}$	$0.48^{+0.47\pm0.08}_{-0.43\pm0.03}$	$0.51_{-0.46}^{+0.44}$	$0.52_{-0.47}^{+0.42}$	$0.52^{+0.43\pm0.01}_{-0.47\pm0.00}$	$0.49_{-0.44}^{+0.45}$	$0.42^{+0.50}_{-0.38}$	$0.45^{+0.48\pm0.02}_{-0.41\pm0.01}$	
Final spin $a_{\rm f}$	$0.68^{+0.05}_{-0.07}$	$0.68\substack{+0.06\\-0.05}$	$0.68^{+0.05\pm0.01}_{-0.06\pm0.02}$	$0.73^{+0.05}_{-0.06}$	$0.75^{+0.07}_{-0.05}$	$0.74^{+0.06\pm0.03}_{-0.06\pm0.03}$	$0.65^{+0.09}_{-0.10}$	$0.66^{+0.08}_{-0.10}$	$0.66^{+0.09\pm0.00}_{-0.10\pm0.02}$	
Luminosity distance $D_{\rm L}/{\rm Mpc}$	400^{+160}_{-180}	440^{+140}_{-170}	$420^{+150\pm20}_{-180\pm40}$	450^{+180}_{-210}	440^{+170}_{-180}	$440^{+180\pm20}_{-190\pm10}$	1000^{+540}_{-490}	1030_{-480}^{+480}	$1020^{+500\pm20}_{-490\pm40}$	
Source redshift z	$0.086^{+0.031}_{-0.036}$	$0.094\substack{+0.027\\-0.034}$	$0.090^{+0.029\pm0.003}_{-0.036\pm0.008}$	$0.096^{+0.035}_{-0.042}$	$0.092\substack{+0.033\\-0.037}$	$0.094^{+0.035\pm0.004}_{-0.039\pm0.001}$	$0.198^{+0.091}_{-0.092}$	$0.204^{+0.082}_{-0.088}$	$0.201^{+0.086\pm0.003}_{-0.091\pm0.008}$	
Upper bound	0.050		0.020±0.000	0.012		0.007±0.001	0.072		0.07120.000	
Primary spin magnitude a_1	0.62	0.73	0.67 ± 0.09	0.68	0.83	0.77 ± 0.12	0.64	0.69	0.67 ± 0.04	
Secondary spin magnitude a_2	0.93	0.80	0.90 ± 0.12	0.90	0.89	0.90 ± 0.01	0.89	0.85	0.87 ± 0.04	
Lower bound										
Mass ratio q	0.62	0.68	0.65 ± 0.05	0.25	0.30	0.28 ± 0.04	0.22	0.28	0.24 ± 0.05	
Log Bayes factor $\ln \mathcal{B}_{s/n}$	287.7 ± 0.1	289.8 ± 0.3		59.5 ± 0.1	60.2 ± 0.2		22.8 ± 0.2	23.0 ± 0.1		
Information criterion DIC	32977.2 ± 0.3	32973.1 ± 0.1		34296.4 ± 0.2	34295.1 ± 0.1		94695.8 ± 0.0	94692.9 ± 0.0		

Outline

- Gravitational radiation emission from the source.
- Gravitational radiation detection from interferometers.
- Parameter estimation.
- Event rates and formation scenarios.

+

Х

http://www.soundsofspacetime.org/spinning-binaries.html

Can measure initial spins through spin-orbit coupling if enough cycles of inspiral are measured.

Interferometric Detection

Histogram of Inclinations

FIG. 5. Posterior probability distributions for the dimensionless component spins $cS_1/(Gm_1^2)$ and $cS_2/(Gm_2^2)$ relative to the normal to the orbital plane *L*, marginalized over the azimuthal angles. The bins are constructed linearly in spin magnitude and the cosine of the tilt angles, and therefore have equal prior probability. The left plot shows the distribution for GW150914, the middle plot is for LVT151012, and the right plot is for GW151226.

GW150914

GW151226

2.5 detections so far.

Event Rate Estimates

9 - 240 Gpc⁻³yr⁻¹

Formation Scenarios

The challenge is to create systems with close enough separation to merge within a Hubble time:

- Initial separation:
 - 150914: 50 R_{\odot}
 - 151226: 21 R_{\odot}
 - 151012: 32 R_{\odot}

Field Evolution

The origin and evolution of LIGO's first gravitational-wave source

Krzysztof Belczynski,^{1*} Daniel E. Holz,² Tomasz Bulik,¹ Richard O'Shaughnessy³ ¹Astronomical Observatory, Warsaw University, Ujazdowskie 4, 00-478 Warsaw, Poland ²Enrico Fermi Institute, Department of Physics, and Kavli Institute for Cosmological Physics,

Field Evolution

The origin and evolution of LIGO's first gravitational-wave source

Krzysztof Belczynski,^{1*} Daniel E. Holz,² Tomasz Bulik,¹ Richard O'Shaughnessy³ ¹Astronomical Observatory, Warsaw University, Ujazdowskie 4, 00-478 Warsaw, Poland ²Enrico Fermi Institute, Department of Physics, and Kavli Institute for Cosmological Physics,

A new route towards merging massive black holes

Pablo Marchant1*, Norbert Langer1, Philipp Podsiadlowski2,1, Thomas M. Tauris1,3, and Takashi J. Moriya1

¹ Argelander-Institut f
ür Astronomie, Universit
ät Bonn, Auf dem H
ügel 71, 53121 Bonn, Germany ² Department of Astrophysics, University of Oxford, Oxford OX1 3RH, UK

³ Max-Planck-Institut f
ür Radioastronomie, Auf dem H
ügel 69, 53121 Bonn, Germany

MODEL

MODEL

BINARY BLACK HOLES IN DENSE STAR CLUSTERS: EXPLORING THE THEORETICAL UNCERTAINTIES

SOURAV CHATTERJEE, CARL L. RODRIGUEZ, & FREDERIC A. RASIO Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA) Physics & Astronomy, Northwestern University, Evanston, IL 60202, USA sourav.chatterjee@northwestern.edu Draft version March 4, 2016

Portegies Zwart & McMillan 2000 Miller & Hamilton 2002 MB 2002 O'Leary + 2006 O'Leary, O'Shaughnessy, & Rasio 2007 Sadowski + 2008 Moody & Sigurdsson 2009 Downing, MB, Giersz, & Spurzem 2010 Downing, MB, Giersz, & Spurzem 2011 Morscher, Umbreit, Farr, Rasio 2013 Bae, Kim, & Lee 2014

Summary

- Gravitational wave observations give
 - Masses
 - Inclination
 - Distance
 - Spin
- Difficulties
 - Sky location
 - Spins are difficult
 - Formation ? Kicks ?

Prospects for eLISA

If a binary black hole merges, this implies that there are many more binary black holes at lower frequencies.

These will be eLISA sources

MB, Hinojosa, Mata, Belczynski 2015

• Frequency evolution of a binary: $\dot{f} = k_0 f^{11/3}$

$$k_0 = \frac{96}{5} \left(2\pi\right)^{8/3} \frac{G^{5/3}}{c^5} \frac{m_1 m_2}{M^{1/3}}$$

• Number density of binaries in frequency range df:

$$dn = \frac{\eta}{k_0} f^{-11/3} df$$

• Number density of binaries above *f*_{min}:

$$n = \frac{\eta}{k_0} \frac{3}{8} f_{\min}^{-8/3}$$

Volume to 30 Mpc and minimum frequency of 1 mHz.

Merger rate in events/Gpc³/yr.

All systems with same chirp mass.

The number of systems in this volume is numerically equal to the merger rate.

Expect more than 2-400 systems within 30 Mpc in the eLISA band.

Sesana 2016

eLISA error box superimposed on a chart of the Virgo cluster, centered on NGC 4365 for a typical BBH signal.

Stellar Aggregates, Bad Honnef

