The MEGaN project: investigating the evolution of galactic nuclei and their environment

Stellar aggregates over mass and spatial scale *Physikzentrum Bad Honnef Decemeber 5-9, 2016*

Manuel Arca Sedda Università di Roma – Sapienza

The MEGaN project: modelling the evolution of galactic nuclei

funded by the University of Rome Sapienza through the grant 52/2015

1 CPU usage \rightarrow >10 yrs.

Results are

NCs and SMBHs

NCs and SMBHs: star clusters infall scenario

✓ Dynamical Friction + **Tidal Forces**

> Arca Sedda M., Capuzzo-**Dolcetta R., 2014,** MNRAS, 444, 3738-3755C

> Antonini F., 2013, ApJ, 763, 62

Gnedin O., Ostriker J., Tremaine S., 2014, ApJ, 785, 71

See Poster

oflara

Tostae

Melo

NCs and SMBHs: star clusters infall scenario

Fornax (dwarf)
Henize (starburst)
MEGaN (elliptical)

NCs and SMBHs: star clusters infall scenario

 10^8M_{\odot}

ΛΙ

 M_{BH}

DF

- ✓ Dearth of NCs and/or SMBHs in dwarf spheroidals;
- ✓ Acquire informations about dSph formation history;
- ✓ Formation of NCs in starburst galaxies;
- ✓ Formation of rotating NSD in middle-weight galaxies;

Arca Sedda & Capuzzo-Dolcetta, 2016, MNRAS, 461, p.4335-4342 Arca-Sedda et al., 2015, Apj, 806, 220

Arca Sedda & Capuzzo-Dolcetta, 2017, MNRAS,464, 3060 TF

- ✓ Dearth of NCs in massive galaxies hosting very massive SMBHs;
- ✓ Computational challenge;
- ✓ Strong dynamical feedback from the central SMBH can:
 - \checkmark enhance TDEs,
 - ✓ produce HVSs,
 - \checkmark force stellar BHBs to merge,
 - ✓ enhance IMBH-SMBH collisions

Arca-Sedda & Capuzzo-Dolcetta, in prep.

The role of SMBHs on the formation of a NC

- ✓ Dynamical friction (DF): clusters transfer some of its orbital energy to field stars, thus moving on even smaller orbits and reaching, eventually, the galactic centre;
- ✓ Tidal forces (TF): tidal forces exerted from the galactic background and/or the central SMBH can disrupt the star clusters as they move on their orbits.

¹⁰ Arca-Sedda et al., 2016, MNRAS, 456, 2457

The MEGaN simulation: N-body modelling of a massive galactic nucleus

THE MEGaN simulation

- central SMBH mass $M_{SMBH} = 10^8 \text{ M}_{\odot};$
- host galaxy mass: $M_g = 10^{11} M_{\odot},$ density profile inner slope: $\gamma = 0.1;$
- GCs: No = 42 masses in the range $(0.3 - 2) \times 10^{6} M_{\odot};$
- Total No. of particles > 1M;
- Individual particle mass $10^2 \, M_{\odot}$.

Does a nuclear cluster form?

30

Arca-Sedda et al., 2016, MNRAS, 456, 2457

Capuzzo-Dolcetta and Fragione, 2015, MNRAS, 454, 2677

- 2% of the total GCS stars are ejected with $v_{ej} \simeq 140 - 500 km/s$;
- 0.02% with $v_{ej} > 1500 km/s$.
- Assuming a Kroupa IMF $(\langle m \rangle = 0.62 M_{\odot})$ we estimate $\simeq 10^2 \text{ HVSs}$ with $v_{ej} > 1500 \text{ km s}^{-1}$ $\simeq 10^4 \text{ with } v_{ej} \ge 200 \text{ km s}^{-1}$

Production of coalescing stellar black hole binaries (BHBs)

Production of coalescing stellar black hole binaries (BHBs)

30 $M_g = 3.2 \cdot 10^{11} M_{\odot}$ 20 10 0 y/pc -10 -20 -30 -40 -20 -10 0 10 20 30 40 50 60 x/pc

Numerical approach: HiGPUs + ARGdf

HiGPUs

Capuzzo-Dolcetta R., Spera M. and Punzo D., 2013, JCP, 236, p. 580-593

- ✓ Highly parallel
- ✓ Direct N-body

ARGdf

New implementation of the version developed by: Mikkola S. and Merritt D. 2008, AJ, 135 (6), pp. 2398-2405

- ✓ Algorithmic regularization
- PPN terms
- ✓ Dynamical friction
- External potential

Production of coalescing stellar black hole binaries (BHBs)

- $M = 1.8 \times 10^6 M_{\odot}$
- $M_1 = 30 M_{\odot}$ $M_2 = 20 M_{\odot}$
- $P(a)da \propto a^{-1}$
- $a_M = 10^{-4} pc$
- $a_m = 100(R_{s1} + R_{s2})$
- $P(e)de \propto 2ede$
- $r_0 = 0.2 2 pc$
- $\rho(r) = \rho_D(r)$

$$t_{gw} = \frac{5}{256} \frac{c^5 a^4 (1 - e^2)^{7/2}}{G^3 M_1 M_2 (M_1 + M_2)} = 9.6 Gyr \left(\frac{a}{10^{-6} pc}\right)^4 (1 - e)^{7/2}$$

Sim ID.

Production of coalescing stellar black hole binaries (BHBs)

$$t_{gw} = \frac{5}{256} \frac{c^5 a^4 (1 - e^2)^{7/2}}{G^3 M_1 M_2 (M_1 + M_2)} = 9.6 Gyr \left(\frac{a}{10^{-6} pc}\right)^4 (1 - e)^{7/2}$$

Implications for IMBHs and SMBHs interactions

Apj, 796, 60

Arca Sedda and Gualandris, in prep.

Implications for IMBHs and SMBHs interactions

$$M_1=1.97\times 10^6 M_\odot \rightarrow M_{ibh1}=1.12\times 10^4 M_\odot$$

 $M_2=1.86\times 10^6 M_\odot \rightarrow M_{ibh2}=1.06\times 10^4 M_\odot$

1

Conclusions

