BLACK HOLE MERGERS IN NUCLEAR CLUSTERS FABIO ANTONINI CIERA/NORTHWESTERN UNIVERSITY

Carl Haster (CITA); Fani Dosopulou, Sourav Chatterjee, Fred Rasio, Vicky Kalogera (CIERA); Carl Rodriguez (MIT); Hagai Perets (Technion).

HOW DO BH-BINARIES FORM?

1) ISOLATED BINARY EVOLUTION

(e.g., Belczynski+ '02, Dominik '12, Spera+ '15, Belczynski+ '16)

2) DYNAMICAL FORMATION IN GLOBULAR CLUSTERS

(e.g., Portegies Zwart & McMillan 2000, Banerjee+ '10, Rodriguez+ '16)

1) ISOLATED BINARY EVOLUTION (e.g., Belczynski+ '02, Dominik '12, Spera+ '15, Belczynski+ '16)

2) DYNAMICAL FORMATION IN GLOBULAR CLUSTERS

(e.g., Banerjee+ '10, Rodriguez+ '16, Haster+ '16, Antonini+ '16)

3) BH-BH CAPTURES IN GALACTIC NUCLEI (O'Leary et al. 2009, Hong and Lee 2015)

4) FORMATION IN TRIPLES (Thompson '11, Antonini+ '14,'16, Silsbee and Tremaine '16)

5) PRIMORDIAL BLACK HOLES

(e.g., Birds '16)

6) DYNAMICAL FORMATION IN NUCLEAR CLUSTERS (Miller and Lauburg '09, Antonini and Perets '12, Antonini and Rasio '16)

1) ISOLATED BINARY EVOLUTION (e.g., Belczynski+ '02, Dominik '12, Spera+ '15, Belczynski+ '16)

2) DYNAMICAL FORMATION IN GLOBULAR CLUSTERS

(e.g., Banerjee+ '10, Rodriguez+ '16, Haster+ '16, Antonini+ '16)

3) BH-BH CAPTURES IN GALACTIC NUCLEI (O'Leary et al. 2009, Hong and Lee 2015)

4) FORMATION IN TRIPLES

(Thompson '11, Antonini+ '14,'16, Silsbee and Tremaine '16)

5) PRIMORDIAL BLACK HOLES

(e.g., Birds '16)

6) DYNAMICAL FORMATION IN NUCLEAR CLUSTERS (Miller and Lauburg '09, Antonini and Perets '12, Antonini and Rasio '16)

NUCLEAR CLUSTERS

(Antonini and Rasio '16)

- Continuous star formation
- Some host central SMBHs
- High escape velocities
 (~100 Km s⁻¹)

GLOBULAR CLUSTERS

(Rodriguez+ '16)

- GCs are old
- No central SMBH
- Low escape velocities (~20 Km s⁻¹)

BH mergers from nuclear clusters have distinct properties from those formed in globulars

NUCLEAR CLUSTERS WITHOUT MASSIVE BLACK HOLE

BH cluster formation

BH binaries form via three body interactions

BH cluster formation

BH binaries form via three body interactions

Hardening

RETENTION OF MERGER REMNANTS

A large fraction of BH merger remnants is retained in NCs; Significant growth can occur.

MODEL PREDICTIONS Antonini and Rasio '16

Nuclear clusters are efficient factories of BH-BH mergers

 $\Gamma_{\rm NC}\approx 2Gpc^{-3}yr^{-1}$

 $\Gamma_{GC}\approx 5Gpc^{-3}yr^{-1}$

MODEL PREDICTIONS Antonini and Rasio '16

Nuclear clusters are efficient factories of BH-BH mergers

 $\Gamma_{\rm NC}\approx 2 Gpc^{-3}yr^{-1}$

 $\Gamma_{GC}\approx 5Gpc^{-3}yr^{-1}$

Nuclear clusters are efficient factories of GW150914-like mergers

 $\Gamma_{\rm NC}(z < 0.3; M > 50M_{\odot}) \approx 0.4 - 1.5 {\rm Gpc}^{-3} {\rm yr}^{-1}$ $\Gamma_{\rm GC}(z < 0.3; M > 50M_{\odot}) \approx 0.05 - 1 {\rm Gpc}^{-3} {\rm yr}^{-1}$

NUCLEAR CLUSTERS WITH MASSIVE BLACK HOLE

THE LIDOV-KOZAI MECHANISM

Triple system is stable and can be thought as two interacting wires rather than point masses on orbits (orbit-average approximation):

THE LIDOV-KOZAI MECHANISM NEAR A MBH Antonini and Perets '12 Prodan, Antonini and Perets '15 Antonini, Dosopoulou in prep.

MERGERS OF BLACK HOLE BINARIES

T_{GW}~(1-e²)^{7/2} Kozai cycles can reduce the merger timescale by many orders of magnitude (e.g., Blaes 2002; Antonini+16; Haster, Antonini, Kalogera, Mandel '16)

Example of BH merger near a MBH

Rate: ~100 Gpc⁻³yr¹ (VanLandingham, Miller et al. 2016) Rate (observed): 9-240 Gpc⁻³yr¹ (Abbott et al. 2016)

Kozai timescale shorter than the binary orbital period: secular approx. fails; Eccentric sources for aLIGO are produced (Antonini and Perets '12, Antonini+ '14, '16)

ORBIT AVERAGED APPROXIMATION

Ford (2000), Blaes et al (2002), Naoz (2013) etc.

ORBIT AVERAGED APPROXIMATION

Ford (2000), Blaes et al (2002), Naoz (2013) etc.

ORBIT AVERAGED APPROXIMATION

Ford (2000), Blaes et al (2002), Naoz (2013) etc.

Antonini and Perets '12, Katz and Dong '12, Antonini '14, '16

Timescale, T_k, to reach e~1: $T_K \approx P \frac{M_b}{m_3} \left[\frac{a_2(1-e_2)}{a_1} \right]^3 \sqrt{1-e_1}$

Antonini and Perets '12, Katz and Dong '12, Antonini '14, '16

Timescale, T_k, to reach e~1: $T_K \approx P \frac{M_b}{m_3} \left[\frac{a_2(1-e_2)}{a_1} \right]^3 \sqrt{1-e_1}$

Set T_k<Orbital period:

$$r_{\rm cr} \equiv rac{a_2(1-e_2)}{a_1} \lesssim 10$$
 For three BHs

$$r_{
m cr} \equiv rac{a_2(1-e_2)}{a_{td}} \lesssim 20$$
 For a binary around a massive BH

Antonini and Perets '12, Katz and Dong '12, Antonini '14, '16

Unique GW signal. Bursts with duration:

$$\Delta T_p \sim \sqrt{\left[a_1(1-e_1)\right]^3/GM_b}$$
 LIGO band
$$\boxed{\Delta T} \sim \sqrt{a_1^3/GM_b}$$

ECCENTRICITY DISTRIBUTION

A handful of detections would suffice to tell whether most black hole mergers form in the gravitational field of a massive black hole

CONCLUSIONS

Stellar dynamics in nuclear clusters produce black hole binaries that merge at a high rate in the local Universe

Unique statistical distribution of their properties

More massive mergers can be naturally formed in NCs

RETENTION OF MERGER REMNANTS

A large fraction of BH merger remnants is retained in NCs; Significant growth can occur.

NUCLEAR CLUSTERS ARE EFFICIENT FACTORIES OF BH-BH MERGERS

 $\Gamma_{\rm NC}\approx 2Gpc^{-3}year^{-1}$ Tens of detections of BH-BH mergers formed in NCs are expected

EXAMPLE CASE

EXAMPLE CASE

Haster, Antonini, Kalogera, Mandel (2016)

FIRST DETECTIONS

NUCLEAR CLUSTERS ARE EFFICIENT FACTORIES OF GW150914-LIKE MERGERS

 $\Gamma_{\rm aLIGO}^{\rm NSC}(z < 0.3; M > 50M_{\odot}) \approx 0.4 - 1 \ \rm Gpc^{-3} \ yr^{-1}$ $\Gamma_{\rm aLIGO}^{\rm GC}(z < 0.3; M > 50M_{\odot}) \approx 0.05 - 1 \ \rm Gpc^{-3} \ yr^{-1}$