Stellar mass black holes in young massive and open clusters and their role in gravitational-wave generation

Sambaran Banerjee

Argelander-Institut für Astronomie (AlfA) and Helmholtz-Instituts für Strahlen- und Kernphysik (HISKP), University of Bonn

Bad Honnef, December 2016

(arXiv: 1611.09357)

M22 BH candidates (Strader et al. 2012)

Stellar-mass black holes in globular clusters

Promising source for LIGO-VIRGO gravitational-wave detector

ACTA 5.5-Ghz image of 47 Tuc core (Miller-Jones et al. 2015)

Dynamical formation of BH-BH binaries

3-body binary formation in dense BH-core:

in close encounter among 3 BHs, two of them get bound while third escape with the excess K.E.

Multiple exchange:

BHs being more massive replace stellar binary members in successive exchange encounters;

efficient with primordial binaries

Direct N-body computation of $N = 4.5 \times 10^4$ cluster, $r_h(0) = 1$ pc, $N_{BH} \approx 100$ (full retention).

[Banerjee et al. (2010), MNRAS, 402, 371]

Two phases: (a) initial segregation: $N_{BH} \approx \text{ const}$ (b) formation of BH-core: N_{BH} depletes due to super-elastic dynamical encounters.

BH-core (or "Dark core") phase have potential for a wide variety of physical phenomena

Merger-time distribution

Most mergers happen within first few Gyr.

Merger-time distribution

Merger-time distribution

Most mergers happen within first few Gyr.

Belczynski et al. 2010, ApJ, 714, 1217 wind ...

- Vink et al. (2010) main-sequence winds for O-type stars depends on metallicity, weak for low-Z stars
- Weaker LBV winds
- Implosion (failed supernova) to black hole for $\gtrsim 7.3 M_{\odot}$ Fe-core => low (zero) BH natal kicks
- NSs formed from electron-capture supernovae (of $\approx 1.26 M_{\odot}$) have low (zero) natal kicks
- Recently implemented in NBODY6/7

Initial-final mass relation in (modified) BSE/NBODY6(7)

c.f. Spera, Mapelli & Bressan 2015, MNRAS, 451, 4086

New model calculations: from young age until Hubble time

Varying metallicity, solar-neighbourhood-like external field

$M_{cl}(0)/M_{\odot}$	$r_h(0)/\mathrm{pc}$	Z/Z_{\odot}	$N_{ m mrg,in}$	$N_{ m mrg,out}$
5.0×10^4	2.0	0.05	$1 (24.3M_{\odot} + 17.7M_{\odot})$	$1 (26.0 M_{\odot} + 42.8 M_{\odot})$
5.0×10^4	2.0	0.25	$1 (34.5M_{\odot} + 22.7M_{\odot})$	0
5.0×10^4	2.0	1.00	$3 (9.0 M_{\odot} + 7.5 M_{\odot})$	0
			$(10.6M_{\odot} + 9.4M_{\odot})$	
			$(9.1M_{\odot} + 9.0M_{\odot})$	
3.0×10^{4}	2.0	0.05	$1 (38.1 M_{\odot} + 25.9 M_{\odot})$	$2 (25.7 M_{\odot} + 13.8 M_{\odot})$
				$(23.6M_{\odot} + 22.3M_{\odot})$
3.0×10^{4}	2.0	0.25	0	$2 (35.2M_{\odot} + 20.3M_{\odot})$
				$(15.7M_{\odot} + 12.2M_{\odot})$
3.0×10^4	2.0	1.00	$1 (10.6M_{\odot} + 9.0M_{\odot})$	0
1.5×10^{4}	2.0	0.05	$1 (49.4 M_{\odot} + 30.9 M_{\odot})$	0
1.5×10^4	1.0	0.25	0	0
1.0×10^4	2.0	0.05	0	0
1.0×10^4	1.0	0.05	$1 (43.6 M_{\odot} + 34.5 M_{\odot})$	0
1.0×10^4	1.0	0.25	0	0
0.7×10^4	1.0	0.05	0	0

Table 1: Summary of new calculations with NBODY7.

t (Myr)

$M_{cl}(0) \approx 5 \times 10^4 M_{\odot}; r_h(0) \approx 2 \text{ pc}; Z = 0.001$

r_h (pc)

Escaped BH-BH binaries: all models

