Filippo Contenta (f.contenta@surrey.ac.uk) J. Petts, E. Balbinot, I. Claydon, M. Collins, M. Delorme, M. Gieles, A. Gualandris, J. Penarrubia, J. Read

Background:

The recently discovered Eridanus II (Eri II) ultra-faint dwarf is unique in that it has a central star cluster of stellar mass $\sim 4000 \text{ M}_{\odot}$ and half-light radius of 13 pc that lies $\sim 45 \text{ pc}$ from the centre of Eri II in projection.

To study Eri II's star cluster we performed a suite of direct N-body simulations, in two Dehnen models (Dehnen 1993) Petts et al. 2016), which include dynamical friction.

shown in Fig. 2., using NBODY6*df* (Nitadori & Aarseth 2012; The initial galactocentric distance, size and mass of the cluster were explored in our grid of models. We analyse the results comparing the half-mass radius and the mass of the cluster with the observation uncertanties, taking into account that the cluster is close to the centre of Eri II in projection.

Results for the cored model:

Fig.3: Triangle plot summarising our suite of simulations. Every point is a simulation and is colour-coded by its likelihood of fitting the observations. While the 'x' is a simulation that dissolve rapidly (< 5 Gyr). The diagonal panels show the marginalized likelihood for each explored parameter and the green solid and dashed lines are the best-fit and 1σ confidence intervals.

Fig.1: Figure 4 from Crnojević et al. (2016). LEFT: Image centered on Eri II, the red dashed ellipse marks its half-light radius. RIGHT: Zoom on the Eri II's star cluster.

Dwarf galaxy model for Eri II:

We estimate for Eri II a halo mass of $\sim 5 \times 10^8 M_{\odot}$, based on Read et al. (2016a,b) and assuming that Eri II formed stars for 9 Gyr. With a fixed star formation time, there are two models of interest: a cusped model where cusp-core transformations don't occur and a model where they do.

Fig.2: Estimated dark matter density profiles of Eri II. In blue the cuspy models, where the dashed blue line is the best fit with a Dehnen model with $\gamma = 1$. In grey the core models, where the dashed black line is the best fit with a Dehnen model with $\gamma = 0$. We show that changing the virial mass of the galaxy ($2.5 \times$ $10^8 \, {
m M}_{\odot}$ and $10^9 \, {
m M}_{\odot}$) produces relatively small effects. The green line is the half-light radius of Eri II.

Eridanus II: a cored dwarf galaxy?

Core or cusp dark matter profile?

The N-body simulations:

Conclusion:

In conclusion, Fig. 3 and 4 show us that a cored dark matter potential is favoured to fit the observational data, taking into account that the cluster lies close to the centre of Eri II in projection.

REFERENCES:

Crnojević D., Sand D. J., Zaritsky D., Spekkens K., Willman B., Hargis J. R., 2016, ApJ, 824, L14; Dehnen W., 1993, MNRAS, 265, 250; Nitadori K., Aarseth S. J., 2012, MNRAS, 424, 545; Petts J., Read J. I., Gualandris A., 2016, MNRAS, 463, 858; Read J. I., Agertz O., Collins M. L. M., 2016a, MNRAS, 459, 2573; Read J. I., Iorio G., Agertz O., Fraternali F., 2016b, submitted in MNRAS, arXiv e-print: 1607.03127

Fig.4: Triangle plot summarising our suite of simulations. Every point is a simulation and is colour-coded by its likelihood of fitting the observations. While the 'x' is a simulation that dissolve rapidly (< 5 Gyr). The diagonal panels show the marginalized likelihood for each explored parameter and the green solid and dashed lines are the best-fit and 1σ confidence intervals.