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Outline

• We investigate the dynamical evolution of isolated equal mass star cluster models by
means of N-body simulations, primarily focusing on the effects of the presence of pri-
mordial anisotropy in the velocity space.

• We show that equilbria characterised by the same initial structural properties (Plummer
density profile) and with different degrees of tangentially - biased (radially - biased)
anisotropy, reach core collapse earlier (later) than isotropic models

• We interpret this result in light of an accelerated (delayed) phase of the early evolution of
collisional stellar systems, which we characterise in terms of the evolution of the velocity
moments

Method and initial conditions

• The initial conditions of the models presented in this study are realisations of De-
jonghe’s (1987) anisotropic Plummer models. The distribution function is:

Fq(E,L) =
3Γ(6− q)

2(2π)
5
2Γ(12q)

E
7
2
−qH

(

0,
1

2
q,
9

2
− q, 1;

L2

2E

)

where E is energy, L angular momentum, q is the parameter which controls the
amount of anisotropy (and lies in the range −∞ < q < 2), Γ is the Gamma func-
tion and H is a function, which is expressible in terms of the hypergeometric function
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• All models have 8K particles and for a given q value different random seeds were
used to create different realisations

• All models have the same mass density profile regardless of the value of q.

• All N-body simulations were run using NBODY6 (Aarseth, 2003)

• In all figures and in the table Hénon units are used

Properties of the N-body simulations

q N # tcc 2Tr

T⊥
Figs

2 8K 4 2133 ± 64 1.96 1-4
0 8K 4 1908 ± 53 1.00 1-4
-2 8K 4 1678 ± 56 0.66 1-4
-6 8K 1 1480 0.40 2-4

-∞ 8K 1 700 0.00 2

q parameter for the Dejonghe anisotropic Plummer model
N number of particles
tcc is the average core collapse time (with the standard deviation)
# is the number of realisation
Tr total kinetic energy of radial motions
T⊥ total kinetic energy of transverse motions
Figs Figures displaying the results from N-body simulations

Note that none of the models show signs of the radial orbit instability, even though q=2
is at the upper limit of the critical value (1.7±0.25) found by Polyachenko and Shukhman
(1981)

Radial anisotropy slows down core collapse
and tangential speeds it up
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Fig. 1: Time evolution of the core radii of anisotropic Plummer models, blue lines represent

radially anisotropic models (q=2), red lines represent isotropic Plummer models (q=0) and

green lines represent tangentially anisotropic models (q=-2). Tangential anisotropy acceler-

ates the core collapse while radial anisotropy slows it down. We interpreted this behaviour as

a tendency for the inner part of the system to contract (or expand for the radial case) as the

system relaxes towards a more isotropic velocity distribution (see box ”Jeans Equations”).

The effect of increasing tangential anisotropy
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Fig. 2: Time evolution of the core radius of anisotropic models. One realisation from each

group in Fig. 1 is included as well as two more tangentially anisotropic models, a q=-6 model

and a model consisting entirely of circular orbits (q → −∞, also referred to as the Einstein

Sphere). All models start with approximately the same value of rc (at t = 0). The more tangen-

tially anisotropic the model, the greater the acceleration of core collapse. For the case of the

Einstein Sphere, core collapse is faster by almost a factor 3.

Spatial distribution of the anisotropy
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Fig. 3: Anisotropy profiles (β = 1 −
σ2t
σ2r

= q
2

r̃2

1+r̃2
, where r̃ is r divided by the scaled radius

of the Plummer model) for four values of q. Note that curves with the same absolute value
of q are symmetrical by reflection across the x-axis, therefore the spatial distribution of their
anisotropy is equivalent (with opposite sign).

Jeans equations
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Fig. 4: The predicted response of anisotropic Plummer models, as they evolve from their ini-
tial conditions towards velocity isotropy. The curves in the above figure are calculated by
using the radial Jeans equation. Assuming spherical symmetry, the radial Jeans equation in
spherical coordinates can be written as
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We evaluate this by assuming that ρ and σ2
tot (where σ2

tot = σ2
r + 2σ2

t ) remain constant and that,

after a central relaxation time tr(0), σ
2
r becomes σ2

r +
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(13σ
2
tot − σ2

r). For radial (tangential)

anisotropy the acceleration is outward (inward).
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