

The Leverhulme Trust

Outline

- We investigate the dynamical evolution of isolated equal mass star cluster models by means of N-body simulations, primarily focusing on the effects of the presence of primordial anisotropy in the velocity space.
- We show that equilbria characterised by the same initial structural properties (Plummer density profile) and with different degrees of tangentially - biased (radially - biased) anisotropy, reach core collapse earlier (later) than isotropic models
- We interpret this result in light of an accelerated (delayed) phase of the early evolution of collisional stellar systems, which we characterise in terms of the evolution of the velocity moments

Method and initial conditions

• The initial conditions of the models presented in this study are realisations of Dejonghe's (1987) anisotropic Plummer models. The distribution function is:

$$F_q(E,L) = \frac{3\Gamma(6-q)}{2(2\pi)^{\frac{5}{2}}\Gamma(\frac{1}{2}q)} E^{\frac{7}{2}-q} H\left(0,\frac{1}{2}q,\frac{9}{2}-q,1;\frac{L^2}{2E}\right)$$

where E is energy, L angular momentum, q is the parameter which controls the amount of anisotropy (and lies in the range $-\infty < q < 2$), Γ is the Gamma function and *H* is a function, which is expressible in terms of the hypergeometric function $_{2}F_{1}$:

$$H(a,b,c,d;x) = \begin{cases} \frac{\Gamma(a+b)}{\Gamma(c-a)\Gamma(a+d)} x^a {}_2F_1(a+b,1+a-c;a+d;x) \\ \frac{\Gamma(a+b)}{\Gamma(d-b)\Gamma(b+c)} x^{-b} {}_2F_1(a+b,1+b-d;b+c;x^{-b}) \end{cases}$$

- All models have 8K particles and for a given q value different random seeds were used to create different realisations
- All models have the same mass density profile regardless of the value of q.
- All N-body simulations were run using NBODY6 (Aarseth, 2003)
- In all figures and in the table Hénon units are used

q	Ν	#	t_{cc}	$2\frac{T_r}{T_\perp}$	Figs
2	8K	4	2133 ± 64	1.96	1-4
0	8K	4	1908 ± 53	1.00	1-4
-2	8K	4	1678 ± 56	0.66	1-4
-6	8K	1	1480	0.40	2-4
-∞	8K	1	700	0.00	2

Properties of the N-body simulations

q parameter for the Dejonghe anisotropic Plummer model N number of particles

 t_{cc} is the average core collapse time (with the standard deviation) # is the number of realisation

 T_r total kinetic energy of radial motions

total kinetic energy of transverse motions

Figs Figures displaying the results from N-body simulations

Note that none of the models show signs of the radial orbit instability, even though q=2 is at the upper limit of the critical value (1.7 ± 0.25) found by Polyachenko and Shukhman (1981)

Core Collapse Times in Anisotropic Plummer Models

PHIL BREEN¹, ANNA LISA VARRI, DOUGLAS C. HEGGIE University of Edinburgh (UK) ¹ phil.breen@ed.ac.uk

 $x \leq 1$ (-1) x > 1

tially anisotropic the model, the greater the acceleration of core collapse. For the case of the Einstein Sphere, core collapse is faster by almost a factor 3.

References

Aarseth S.J., 2003, Gravitational N-body simulati Cambridge Univ. Press, Cambridge Einstein, A., Annals of Mathematics, 40, 922 (193

ions.	Dejonghe H., MNRAS 224, 13 (1987) Polyachenko V.L., Shukhman I.G., Sov. Astron. 25, 533 (1981)
39)	Plummer, H. C., MNRAS, 71, 460 (1911)