ALMA Proposal.
 Preparation Tutorials

ArgelanderInstitut für Astronomie

EUROPEAN ARC
ALMA Regional Centre || Germany

Introduction to the basic concepts and terminology of rädio interferometry

Part I - spatial filters

ArgelanderInstitut für Astronomie

EUROPEAN ARC
ALMA Regional Centre || Germany

Key concepts to learn

Part 1

- Interferometer
- Baseline
- Primary beam
- Synthesized beam
- Largest angular scale

Atacama Large Millimeter/submillimeter Array

Why does ALMA need so many antennas?

... consider one single antenna (or single-dish)

Single-dish with diameter D

(1D) antenna power response

... consider one single antenna (or single-dish)

Single-dish with diameter D

(1D) antenna power response

PRIMARY BEAM

Single-dish telescope

Single-dish telescope

Single-dish telescope

Single-dish telescope

Single-dish telescope

Interferometer - multiple dishes

Interferometer - multiple dishes

Interferometer - multiple dishes

Interferometer - multiple dishes

Interferometer - multiple dishes

Interferometer - multiple dishes

Small Single-Dish

Interferometer - multiple dishes

Large Single-Dish

ABCD

ABCDEFG

ABCDEFGHIJK
ABCDEFGHIJKLMNOPQR

Interferometer - multiple dishes

"Circular" dishes

ABCD

ABCDEFG

ABCDEFGHIJK
ABCDEFGHIJKLMNOPQR

Interferometer - multiple dishes

"Random" dishes

ABCD
 ABCDEFG
 ABCDEFGHIJK
 ABCDEFGHIJKLMNOPQR

Interferometers as spatial filters

... a bit of equations (Fourier Transform)

$$
V(u, v)=\iint I(l, m) e^{2 \pi i(u l+v m)} d l d m
$$

Interferometers as spatial filters

... a bit of equations (Fourier Transform)

$$
V(u, v)=\iint I(l, m) e^{2 \pi i(u l+v m)} d l d m
$$

$I(1, \mathrm{~m})$
δ Function

Gaussian

$\mathrm{V}(\mathrm{u}, \mathrm{v})$

Constant

Gaussian

Interferometers as spatial filters

... a bit of equations (Fourier Transform)

$$
V(u, v)=\iint I(l, m) e^{2 \pi i(u l+v m)} d l d m
$$

Interferometers as spatial filters

Interferometers as spatial filters

Interferometers as spatial filters

Example: VLA

Very Large Array (VLA)

- 27 antennas of 25 meters (diameter)
- observing from cm to mm wavelengths
- in New Mexico (USA)

Example: PdBI

Plateau de Bure Interferometer (PdBI)

- 6 antennas of 15 meters (diameter)
- observing from mm to submm
- in Grenoble (France)

Example: SMA

SubMillimeter Array (SMA)

- 8 antennas of 6 meters (diameter)
- observing from mm to submm
- in Hawaii (USA)

Example: CARMA

Example: ALMA

Atacama Large mm/submm Array (ALMA)

- 50 antennas of $12 / 7$ meters
- observing from mm to submm
- in Llano Chajnantor (Chile)

Interferometers as spatial filters

- samples of $\mathrm{V}(\mathrm{u}, \mathrm{v})$ are limited by the number of telescopes, and the Earth-sky geometry

Interferometers as spatial filters

- samples of $V(u, v)$ are limited by the number of telescopes, and the Earth-sky geometry

outer boundary:
- no small scales
- resolution limit
inner hole:
- no large scales
- extended structures
irregular coverage:
- information missing

Primary beam, synthesized beam, and LAS

PRIMARY BEAM

SYNTHESIZED BEAM

LARGEST ANGULAR SCALE

Primary beam, synthesized beam, and LAS

PRIMARY BEAM

$$
P B=1.22 \frac{\lambda}{D}
$$

SYNTHESIZED BEAM

LARGEST ANGULAR SCALE

Primary beam, synthesized beam, and LAS

PRIMARY BEAM

$$
P B=1.22 \frac{\lambda}{D}
$$

SYNTHESIZED BEAM

$$
\theta_{\text {beam }}=1.22 \frac{\lambda}{B_{\max }}
$$

LARGEST ANGULAR SCALE

Primary beam, synthesized beam, and LAS

PRIMARY BEAM

$$
P B=1.22 \frac{\lambda}{D}
$$

SYNTHESIZED BEAM

$$
\theta_{\text {beam }}=1.22 \frac{\lambda}{B_{\max }}
$$

LARGEST ANGULAR SCALE

$$
L A S=1.22 \frac{\lambda}{B_{\min }}
$$

INTERFEROMETER IMAGE
$\theta_{\text {beam }}=1.22 \frac{\lambda}{B_{\max }}$

INTERFEROMETER IMAGE

INTERFEROMETER IMAGE

INTERFEROMETER IMAGE
$\theta_{\text {beam }}=1.22 \frac{\lambda}{B_{\max }}$

Primary beam, synthesized beam, and LAS

PRIMARY BEAM

a.k.a. field of view (FOV), ... the area of the sky you want to observe

$$
P B=1.22 \frac{\lambda}{D}
$$

SYNTHESIZED BEAM

LARGEST ANGULAR SCALE
a.k.a. maximum angular size, ... the largest size of your object how big it is?

$$
L A S=1.22 \frac{\lambda}{B_{\min }}
$$

Example I: compact protoplanetary disk

PRIMARY BEAM

$$
P B=1.22 \frac{\lambda}{D}
$$

SYNTHESIZED BEAM

$$
\theta_{\text {beam }}=1.22 \frac{\lambda}{B_{\max }}
$$

LARGEST ANGULAR SCALE

$$
L A S=1.22 \frac{\lambda}{B_{\min }}
$$

Example I: compact protoplanetary disk

PRIMARY BEAM

$$
P B=1.22 \frac{\lambda}{D}
$$

SYNTHESIZED BEAM

$$
\theta_{\text {beam }}=1.22 \frac{\lambda}{B_{\max }}
$$

LARGEST ANGULAR SCALE

$$
L A S=1.22 \frac{\lambda}{B_{\mathrm{min}}}
$$

Example I: compact protoplanetary disk

PRIMARY BEAM

$$
P B=1.22 \frac{\lambda}{D}
$$

SYNTHESIZED BEAM

$$
\theta_{\text {beam }}=1.22 \frac{\lambda}{B_{\max }}
$$

LARGEST ANGULAR SCALE

$$
L A S=1.22 \frac{\lambda}{B_{\min }}
$$

Example II: disks and filament

PRIMARY BEAM

$$
P B=1.22 \frac{\lambda}{D}
$$

SYNTHESIZED BEAM

$$
\theta_{\text {beam }}=1.22 \frac{\lambda}{B_{\max }}
$$

LARGEST ANGULAR SCALE

$$
L A S=1.22 \frac{\lambda}{B_{\min }}
$$

Example II: disks and filament

PRIMARY BEAM

$$
P B=1.22 \frac{\lambda}{D}
$$

SYNTHESIZED BEAM

$$
\theta_{\text {beam }}=1.22 \frac{\lambda}{B_{\max }}
$$

LARGEST ANGULAR SCALE

$$
L A S=1.22 \frac{\lambda}{B_{\min }}
$$

Example II: disks and filament

PRIMARY BEAM

$$
P B=1.22 \frac{\lambda}{D}
$$

SYNTHESIZED BEAM

$$
\theta_{\text {beam }}=1.22 \frac{\lambda}{B_{\max }}
$$

LARGEST ANGULAR SCALE

$$
L A S=1.22 \frac{\lambda}{B_{\min }}
$$

Example II: disks and filament

PRIMARY BEAM

$$
P B=1.22 \frac{\lambda}{D}
$$

SYNTHESIZED BEAM

$$
\theta_{\text {beam }}=1.22 \frac{\lambda}{B_{\max }}
$$

LÁRGEST ANGULAR SCALE

$$
L A S=1.22 \frac{\lambda}{B_{\min }}
$$

Example III: disks and extended filament

PRIMARY BEAM

$$
P B=1.22 \frac{\lambda}{D}
$$

SYNTHESIZED BEAM

$$
\theta_{\text {beam }}=1.22 \frac{\lambda}{B_{\max }}
$$

LARGEST ANGULAR SCALE

$$
L A S=1.22 \frac{\lambda}{B_{\min }}
$$

Example III: disks and extended filament

PRIMARY BEAM

$$
P B=1.22 \frac{\lambda}{D}
$$

SYNTHESIZED BEAM

$$
\theta_{\text {beam }}=1.22 \frac{\lambda}{B_{\max }}
$$

LARGEST ANGULAR SCALE

$$
L A S=1.22 \frac{\lambda}{B_{\min }}
$$

Example III: disks and extended filament

Example ix: disks and extended filament

PRIMARY BEAM

$$
P B=1.22 \frac{\lambda}{D}
$$

SYNTHESIZED BEAM

$$
\theta_{\text {beam }}=1.22 \frac{\lambda}{B_{\max }}
$$

LAṘGEST ANGULAR SCALE

$$
L A S=1.22 \frac{\lambda}{B_{\min }}
$$

Key concepts that we have learned

Part 1

- Interferometer
- Baseline
- Primary beam
- Synthesized beam
- Largest angular scale

Questions?

Contact us at arc@astro.uni-bonn.de

