
Python for Astronomers

Lists, for loops, and file I/O

Exercises: String formatting

● Produce a pretty logarithmic table for
the numbers 0.1, 0.2,... 10.0 which
gives the logarithms for bases 2, e, and
10 to 7 digits.

● Hint: math.log lets you specify the
base. (Consult math.log.__doc__.) Use
"%10.7f" for string formatting.

Exercise: Solution

>>> import math

>>> # Define output format here:

>>> frmt = "\t%.1f" + "\t%10.7f"*3

>>> x = .1

>>> while x<10.05:

... lb = math.log(x,2)

... ln = math.log(x)

... lg = math.log10(x)

... # Use output format here:

... print frmt % (x, lb, ln, lg)

... x += .1

Lists

>>> # Ordered, heterogeneous container:

>>> l = ['spam', 'eggs', 42, 17.4]

>>> l

>>> l[0], l[-1] # Indexing as for strings

>>> # Positive indices: 0 .. len(l)-1

>>> # Negative indices: -1 .. -len(l)

>>> l[1:-1] # Slicing too

>>> # First index included, second not

Changing items

>>> l = ['spam', 'eggs', 42, 17.4]

>>> l[0] = 'ham' # Lists are mutable!

>>> l[2] = 'circus' # Change type of item

>>> # Slices can be changed too!

>>> l[:2] = ['bacon', 'bread']

>>> # But be careful!

>>> l[:2] = ["Monty", "Python", "flying"]

Adding items

>>> l = ['spam', 'eggs', 42, 17.4]

>>> l[5] = 'boo' # Will not work

>>> l.append('boo') # But this will

>>> l.extend([1,2,3]) # Append list

>>> l.insert(1, 'bacon') # Insert item

>>> l + [1,2,3] # Same as extend

>>> l + 3 # No

>>> l * 3 # Yes

Removing items

>>> l = range(20)

>>> del l[2] # Remove single item

>>> del l[1:3] # Remove slice

>>> del l[::3] # Will this work?

>>> l[1:3] = [] # ok

>>> l[1] = [] # ???

>>> l[1:2] = [] # ok

>>> l[::3] = [] # Error

Some list methods

>>> l = [2, 5, 17, 1, 0, 1]

>>> len(l) # Number of items

>>> 17 in l # Test if item present

>>> l.sort() # In place!

>>> l

>>> l.reverse() # Also in place

>>> l

>>> m = l[:] # Copies list

Exercise: More list methods

● Explore further methods by looking at
the online documentation and trying
things out

>>> # Hint:

>>> l = [1,2,3]

>>> l.<TAB> # Gives list of methods

>>> print l.sort.__doc__ # Prints doc

Some special lists

>>> [] # Empty list

>>> # May be used e.g. in while statement:

>>> l = [1,2,3]

>>> while l: # Equivalent to l!=[]

... del l[-1]

... print l

>>> range(100) # 0, 1, ..., 99

>>> range(13,42,3)

Lists are universal

>>> # Keep in mind:

>>> # Lists may contain really anything!

>>> import math

>>> l = [math.pi, math.sin, math]

>>> print l[0]

>>> print l[1](l[0]/4.)

>>> print l[-1].e

>>> # In particular...

Nested lists

>>> # ...lists may contain lists:

>>> l = [[1,2], [3,4,5], 'spam']

>>> l[0] # First item: a list

>>> l[0][1] # An item of the inner list

>>> l[-1][1] # This works too

>>> # Slicing:

>>> l[:2] # As expected

>>> l[1][1:] # Again as expected

>>> l[:2][0] # Surprise?

Nested lists

>>> # Lists may be deeply nested:

>>> l = [1,[2,3],[4,[5,6]]]

>>> l[-1]

>>> l[-1][-1]

>>> l[-1][-1][-1]

>>> # Pathological:

>>> l = [0]

>>> l[0] = l

Exercise: Nested lists

● Experiment:
>>> l = [[1,2,3], [4,5]]

>>> l = [0][1]

>>> l = [1][0]

>>> l = [0][2]

>>> l = [2][0]

>>> l = [-1]

>>> l = [-1:]

>>> l = [-1][-1]

The for statement

>>> for i in [17,4,2]:

... # i takes all values of list

... print i, i*2

... <RETURN>

>>> for i in range(5):

... print i, i*2

... <RETURN>

The for statement

>>> # Also for heterogeneous lists:

>>> for i in ['spam', 42, [1,2,3]]:

... print i, i*2

... <RETURN>

>>> # which may lead to problems:

>>> for i in ['spam', 42, [1,2,3]]:

... print i, i**2

... <RETURN>

The for statement

>>> # The loop variable may run over other

>>> # sequences too:

>>> for c in 'spam':

... print c, c*2

... <RETURN>

The for statement

>>> # Nested for loops:

>>> for i in range(1,5): # Loop var: i

... for j in range(1,i+1): # Loop var: j

... print i, j, i*j

>>> # May be nested with while loops

Exercises

● Calculate the sum of a nested list:

>>> l = [[1,2], [3,4,5]]

>>> sum = 0

>>> for inner in l:

... for item in inner:

... sum += item

● Will this also work for:

>>> l = [[1,2], 3, 4, 5]

>>> l = [[1,2], []]

>>> l = []

>>> l = [[]]

ASCII File I/O

>>> f = open("/home/rschaaf/test.txt")

>>> # Read everything into single string:

>>> content = f.read()

>>> len(content)

>>> print content

>>> f.read() # At End Of File

>>> f.close()

>>> # f.read(20) reads (at most) 20 bytes

ASCII File I/O

>>> # Use arrow keys to get cmd back!

>>> f = open("/home/rschaaf/test.txt")

>>> f.readline() # Read single line

>>> f.readline()

>>> f.readline() # Only \n

>>> f.readline()

>>> f.readline() # Empty string: EOF

ASCII File I/O

>>> f.seek(0) # Move to start of file

>>> # Read with while loop:

>>> line = f.readline()

>>> while line:

... print line, # No 2nd newline added

... line = f.readline()

... <RETURN>

ASCII File I/O

>>> f.seek(0)

>>> # Shorter with readlines and for loop:

>>> lines = f.readlines() # Memory?

>>> lines

>>> for line in lines:

... print line,

... <RETURN>

ASCII File I/O

>>> f.seek(0)

>>> # Even shorter and memory efficient:

>>> for line in f:

... print line,

... <RETURN>

>>> f.close()

ASCII File I/O

>>> # Now write to files:

>>> # If mytest.dat exists, it will be

>>> # overwritten!

>>> f = open("mytest.dat", "w")

>>> f.write("Line 1\n")

>>> f.write("Line 2\n")

>>> f.close() # Data actually written here

ASCII File I/O

>>> # Now append data to mytest.dat:

>>> f = open("mytest.dat", "a") # Append

>>> lines = ["Line 3\n", "Line 4\n"]

>>> f.writelines(lines)

>>> f.close()

Exercise: More on File I/O

● Explore further methods by looking at
the online documentation and trying
things out

>>> # Hint:

>>> f = open("mytest.dat")

>>> print f.__doc__

>>> f.<TAB> # Gives list of methods

>>> print f.flush.__doc__ # Prints doc

Exercises

● File /home/rschaaf/test.dat contains
two columns with (random) floating
point data. Create a new file that has
three columns: Columns 1 and 2 are
the data from /home/rschaaf/test.dat,
column 3 the sum of the numbers in
column 1 and 2.

