
Python for Astronomers

Strings

Exercises - solutions

● Determine the smallest positive float of
our Python installation by using a while-
loop

>>> x = 1.

>>> while x>0:

... x /= 2.

... print x

Exercises - solutions

● Determine the numerical accuracy of
the installation. Add smaller and
smaller numbers to 1. and compare the
result with 1.

>>> x = 1.

>>> while 1.+x>1.:

... x /= 2.

... print x

Exercises - solutions

● Determine the largest positive float of
the installation. Import numpy and
compare larger and larger numbers
with numpy.inf

>>> # First test:

>>> x = 1.

>>> while 1:

... x*= 2.

... print x

... <Ctrl>-c

Exercises - solutions

>>> # inf indicates positive

>>> # infinity (IEEE 754: Floating

>>> # Point Arithmetic)

>>> import numpy

>>> x = 1.

>>> while x!=numpy.inf:

... x *= 2.

... print x

Alternative solutions

>>> x = 1.

>>> while x!=float('inf'):

... x *= 2.

... print x

Alternative solutions

>>> # Python 2.6:

>>> x = 1.

>>> while !math.isinf(x):

... x *= 2.

... print x

String literals

>>> print "spam"

>>> print 'spam' # Equivalent

>>> print "spam' # Must not mix ' and "

>>> print 'I say "spam!"' # but may nest

>>> c = "x" # Characters: strings of length 1

>>> s = """This is a

... block string

... """

>>> print s

Basic operations

>>> s = "Spam for the world!" # Assignment

>>> len(s) # Length; no trailing NULL

>>> "spam" + "spam" # Concatination

>>> 'spam' + "spam"

>>> 'spam' + 100 # No automatic conversion

>>> 'spam' + '100'

>>> 'spam' * 100

>>> 'spam' * '100'

Escape sequences

>>> print "First line\nSecond line"

>>> # print and not print are different:

>>> "First line\nSecond line"

>>> print "1\t2\t3\n11\t12\t13"

>>> print 'I say "spam\'s spam!"'

>>> s = "abc\

... def"

>>> print s

Raw strings and Unicode strings

>>> "C:\new\test.txt"

>>> print "C:\new\test.txt" # whoops

>>> print "C:\\new\\test.txt" # ok

>>> # Alternative: Raw string

>>> print r"C:\new\test.txt"

>>> # Unicode strings code extended

>>> # character sets

>>> u"äöü" # Do not know enough...

smb://new//test.txt

Exercises

● Experiment with strings:

>>> print 'spam' + "spam"

>>> print "spam' + 'spam"

>>> print "#Comment or not?"

>>> print "abc\ #Comment or not?

... def"

>>> print 'I say "spam\'s spam!"'

>>> print r'I say "spam\'s spam!"'

Indexing

>>> s = "Spam for the world!"

>>> s[0] # First character

>>> s[1] # Second character

>>> s[18] # Last character

>>> s[19] # Bounds are checked!

>>> s[-1] # ?

Indexing

>>> s[-1] # Last character!

>>> s[-2] # -i -> len(s)-i

>>> s[-19] # First character

>>> s[-20] # Bounds are checked!

>>> # Positive indices: 0 .. len(s)-1

>>> # Negative indices: -1 .. -len(s)

>>> i = 0

>>> while i<len(s):

... print s[i], s[-(i+1)]

... i += 1

Slicing

>>> s = "Spam for the world!"

>>> s[2:5] # Includes s[2], but not s[5]

>>> s[5:2] # Empty string

>>> s[2:2] # again empty

>>> s[5:-1] # Excludes last character

>>> s[-100:100] # Bounds are ignored here

>>> s[:5] # Default first index: 0

>>> s[5:] # Default last index: len(s)

>>> s[:] # Copy of complete string

>>> s[2:10:2]

>>> s[::-1]

String operations

>>> s = "Spam for the world!"

>>> s[5] = "F" # Strings are immutable!

>>> s = s[:5] + "F" + s[6:]

>>> s.replace("world", "universe")

>>> print s # s is unchanged!

>>> s = s.replace("world", "universe")

Dot notation

>>> s = s.replace("F", "f")

>>> # Applies method replace to string

>>> # object s with arguments ("F", "f")

>>> x = 12

>>> x = x.replace(1, 2)

>>> # Fails, because integer objects have

>>> # no method replace

>>> z = 1+2j

>>> z.real

>>> # Returns attribute real of complex

>>> # object z

Some string methods

>>> s = "Spam for the world!"

>>> s.find("world")

>>> s.index("world") # Identical, but:

>>> s.find("Bonn") # -1

>>> s.index("Bonn") # Error

Some string methods

>>> " Hello world ".strip()

>>> s = "Spam for the world!"

>>> s.strip("!ampS")

>>> s.split() # List of strings

>>> s = "Spam\tfor\nthe world!"

>>> s.split()

>>> s.split("o")

Exercise: String methods

● Explore further methods by looking at
the online documentation and trying
things out

>>> # Hint:

>>> s = ""

>>> s.<TAB> # Gives list of methods

>>> print s.replace.__doc__ # Prints doc

Converting strings and numbers

>>> # Numbers to strings:

>>> str(123), str(2**1000)

>>> str(1.e10), str(1.+2j)

>>> # Strings to numbers:

>>> int("123"), int("1234567890"*100)

>>> float("1.23"), float("1.23e10")

>>> float("1.23 e10") # Error

>>> "123".isdigit()

>>> "1.23".isdigit() # :-(

String formatting

>>> # Very similar to sprintf in C:

>>> "Spam for %s!" % "the world"

>>> "%s for %s!" % ("Ham", "us")

>>> "~%d~" % 123 # ~ for illustration

>>> "~%d~" % 1.23

>>> "~%6d~" % 123 # 6 digits (incl. sign)

>>> "~%6d~" % -12345678 # ...or more

>>> "~%-6d~" % 123 # left jusified

>>> "~%06d~" % 123 # zero padding

>>> "~%+6d~" % 123 # + displayed

String formatting

>>> "~%f~" % 1.2345

>>> # Three digits after digital point:

>>> "~%.3f~" % 1.2345

>>> # At least 8 characters

>>> # (incl. sign and decimal point)

>>> "~%8.3f~" % 1.2345

>>> "~%+08.3f~" % 1.2345

>>> "~%10.3e~" % 1.2345 # With exponent

>>> "~%10.3g~" % 1.2345 # bug?

>>> "~%10.3g~" % 12345.

String formatting

>>> # String formatting can be combined:

>>> import math

>>> s = "%s is %10.3g" % ("Pi", math.pi)

>>> print s

Exercises: String formatting

● Produce a pretty logarithmic table for
the numbers 0.1, 0.2,... 10.0 which
gives the logarithms for bases 2, e, and
10 to 7 digits.

● Hint: math.log lets you specify the
base. (Consult math.log.__doc__.) Use
"%10.7f" for string formatting.

