
Python for Astronomers

Inheritance

Operator overloading

Exercise:
Iterated Prisoner's dilemma

In the iterated Prisoner's dilemma, the police vist the prisoners
repeatedly. The prisoners know the previous testimonies of
both themselves and the other prisoner, and adjust their
reaction to that.

Modify the existing classes in the following form: The police visits
each pair of prisoners nRepeat times. When visiting a prisoner,
the police let him know what the other prisoner did when
visited last time. The visited prisoner adjusts his probability to
testify in the following way: When the other prisoner testified,
his (the visited prisoner's) probability is increased by 5%; when
the other prisoner did not testify, the probability is decreased
by 5%. The new probability is remembered and increased or
decreased during the next visit.

Of course, for a new pair of prisoners the initial probabilities must
be at their original value.

Keep the modifications of the code at a minimum!

Classes and Instances
Summary

Class

Type

Formalized concept

Instance

Object with identity, state
(data members) and
behaviour (methods)

Concrete representation
of concept

Inheritance example

>>> # In Polynomial1.py:

>>> class Polynomial:

... def __init__(self, coeffs):

... self._coeffs = coeffs

... def eval(self, x):

... val = self._coeffs[-1]

... for i in range(2, len(self._coeffs) + 1):

... val = val * x + self._coeffs[-i]

... return val

... def info(self):

... return "coefficients: " + str(self._coeffs)

Inheritance example

>>> class Legendre(Polynomial):

... def __init__(self, n):

... coeffs = {0: [1.], 1: [0., 1.],

... 2: [1./2.,0.,3./2.]}

... self._n = n

... Polynomial.__init__(self, coeffs[n])

... def info(self):

... return "degree: %d; coefficients: %s" \

... % (self._n, str(self._coeffs))

... def getDegree(self):

... return self._n

Inheritance example

>>> import Polynomial1

>>> # Experiments with Polynomial instance:

>>> p = Polynomial1.Polynomial([1, 2, 3])

>>> p.info() # Polynomial.info

>>> p.eval(-2.) # Polynomial.eval

>>> p._coeffs # Polynomial._coeffs

>>> # Methods and data members of subclass:

>>> p.getDegree() # Not available

>>> p._n # Not available

Inheritance example

>>> # Experiments with Legendre instance:

>>> l = Polynomial1.Legendre(2)

>>> l.info() # Legendre.info

>>> l.getDegree() # Legendre.getDegree

>>> l._n # Legendre._n

>>> # Methods and data members of superclass:

>>> l.eval(-2.) # Polynomial.eval

>>> l._coeffs # Polynomial._coeffs

>>> # Check also with l.<TAB>

Inheritance example

>>> class Legendre(Polynomial):

... # Legendre is subclass of Polynomial

... def __init__(self, n):

... # Constructor extends constructor of Polynomial:

... coeffs = {0: [1.], 1: [0., 1.],

... 2: [1./2.,0.,3./2.]}

... # Data member specific to Legendre:

... self._n = n

... # Class constructor of superclass Polynomial:

... Polynomial.__init__(self, coeffs[n])

Inheritance example

... # Method eval not supplied, request transferred to

... # Polynomial.eval instead

... def info(self):

... # Replaces Polynomial.info for Legendre objects

... return "degree: %d; coefficients: %s" \

... % (self._n, str(self._coeffs))

... # from Legendre, from Polynomial

... def getDegree(self):

... # New method, specific for Legendre, added

... return self._n

Inheritance – Key ideas

● Subclasses can be derived from existing classes
with class Sub(Super):

● Subclasses inherit data members and methods
from all their superclasses.

● Subclasses can add new data members and
methods, and can modify existing ones.

● Each object.attribute reference invokes a
search up the inheritance tree.

● This is also true for references from within
methods with self.attribute

● Inside a method, methods of superclasses can
be accessed with
Superclass.method(self, ...)

Making use of inheritance

>>> # Somewhere deep, deep in your program:

>>> def usePolynomial(p):

... # Works for any Polynomial:

... print "Polynomial info: ", p.info()

... print "Value is: ", p.eval(42)

>>> p = Polynomial1.Polynomial([1,2,3])

>>> usePolynomial(p) # ok

>>> l = Polynomial1.Legendre(2)

>>> usePolynomial(l) # also ok!

Making use of inheritance

>>> # usePolynomial will also work for instances

>>> # of new subclasses of Polynomial:

>>> class Bernoulli(Polynomial):

...

>>> b = Polynomial1.Bernoulli(2)

>>> usePolynomial(b) # ok

Liskov Substitution Principle:

It must always be possible to use an instance of a subclass in
place of an instance of its superclass.

Inheritance trees

Polynomial

Bernoulli

Legendre

AssocLegendre

Function

Abstraction - Generalization

● Abstraction / Generalization is another
fundamental principle of OOP

● The related syntactical mechanism is
inheritance, that allows subclassing
existing classes

● Superclasses implement more general
concepts than superclasses

● Python supports generalization fully
● Python does not support abstraction on

a syntactical level (no abstract classes)

Operator overloading

>>> # In Polynomial2.py:

>>> class Polynomial:

... def __init__(self, coeffs):

... self._coeffs = coeffs

... def __call__(self, x):

... # Replaces eval

... val = self._coeffs[-1]

... for i in range(2, len(self._coeffs) + 1):

... val = val * x + self._coeffs[-i]

... return val

Operator overloading

... def __str__(self):

... # Replaces info

... return "coefficients: " + str(self._coeffs)

... def __len__(self):

... """Returns length of Polynomial"""

... return len(self._coeffs)

... def __add__(self, p):

... """Adds Polynomial p to self"""

... ...

Operator overloading

>>> import Polynomial2

>>> p1 = Polynomial2.Polynomial([1, 2])

>>> p2 = Polynomial2.Polynomial([1, 2, 3])

>>> p1(2) # p1.__call__(2)

>>> len(p1) # p1.__len__()

>>> print p1 # p1.__str__()

>>> p = p1 + p2 # p1.__add__(p2)

>>> print p

>>> p += p1 # p = p.__add__(p1)

Some operator overloading
methods

__init__ Class()

__del__ del instance

__add__ x + y, x += y

__radd__ 1 + x

__sub__ x – y, x -= y

__mul__ x * y, x *= y

...

__eq__ x == y

__lt__ x < y

...

__and__ x & y

__or__ x | y

...

__call__ x()

__getitem__ x[i]

__setitem__ x[i] = value

...

__str__ str(x)

__repr__ str(x)

http://docs.python.org/reference/datamodel.html#special-method-names

Things left out

>>> # More advanced topics related with classes:

>>> # Static methods

>>> # Old-style and new-style classes

Things left out
>>> # while and for loops have optional else block

>>> # that are executed if loop is not left with

>>> # break statement:

>>> y = 43

>>> x = y / 2

>>> while x > 1:

... if y % x == 0:

... print y, 'has factor', x

... break

... x -= 1

... else:

... print y, 'is prime'

Things left out

>>> # The continue statement continues with the next

>>> # iteration of a loop

>>> # The pass statement does nothing:

>>> def doNothing():

... # Something has to be here:

... pass

Things left out

>>> # List comprehension is an alternative way

>>> # to write (short) loops:

>>> l = [x**2 for x in range(10)]

>>> # is equivalent to:

>>> l = []

>>> for x in range(10):

... l.append(x**2)

Things left out

>>> # The zip function allows you e.g. to visit

>>> # multiple sequences in a single loop:

>>> l = range(5)

>>> s = "abc"

>>> for i, j in zip(l, s):

... print i, j

Things left out

>>> # The datatype set provides an unordered

>>> # sequence of unique elements together with

>>> # related methods

>>> s1 = set([1,2,3,2])

>>> len(s1)

>>> s2 = set([2,4,6])

>>> s1.intersection(s2)

Things left out

>>> # Everything about functional programming,

>>> # including anonymous functions, filters etc:

>>> # lambda, apply, map, filter, reduce

Things left out

> # Python's options

> python -c "print 'Hello world'"

