
Python for Astronomers

Reinhold Schaaf & Manuel Metz

Argelander-Institut für Astronomie
der Universität Bonn

Lingua franca for astromoners

● Easy to learn but yet powerful
● Fast and easy solutions for everyday

problems
● Allows development of large and

sophisticated software packages
● Several astronomical program

packages implemented using Python
● Excellent tool for scientists

Python in Astronomy

Programs and libraries implemented
(mainly) in Python:
● BoA (Bolometer Analysis Package)
● APECS (APEX control software)
● Astro-WISE (widefield imaging system)
● PyFITS (access to FITS files)
● ...

Python in Astronomy

Wrappers for existing programs and
libraries:
● CasaPy (Casa)
● PYGILDAS (GILDAS)
● ParselTongue (AIPS)
● PyRAF (IRAF)
● PyMIDAS (MIDAS)
● PyIMSL (IMSL)
●

Fortran, C (and C++)

● Working horses of science

● zillions of LOC existing

● optimized for runtime performance

● no reason to replace them (at this time)

● rather cooperate (swig, f2py)

but...

● not really general purpose

● relatively primitive datatypes

● manual memory management

● slow edit/compile/test cycle

IDL, Matlab, Mathematica

● Extremely popular these days
● Interactive, great visualization, good

libraries

but...
● Not really general purpose
● Not really ready for large scale

programs
● Not free, even expensive

Perl, Ruby, shell scripts

● Perl very strong at text manipulation
● Ruby seems to be popular in scientific

community in Japan
● Shell scripts... you will not want to do

shell scripting any more once you know
Python (unless forced)!

This course - audience

● AIfA / MPI: 20/21
● from master student to senior staff

members
● most have at least basic experience in

one or more computer languages
● 16 are interested in course project

This course – program

● Give you what you need for everyday
problems asap

● First half of course: Basic language
elements, some modules from standard
library, elements of NumPy, SciPy and
matplotlib

● Second half of course: Advanced topics
from Python (e.g. exceptions, classes),
from NumPy, SciPy and matplotlib

● Course project will start after first half

This course - setup

● Show, tell & try approach during
classes

● Exercises during classes
● No assignments between classes...
● ...but you should use what you have!
● Course project to be defined

This course – CIP room

● Terminal client
below your desk

● Select server
according to your
row

● Select KDE or
gnome

● Please switch off
screen and
terminal client at
end of class!

Exercises

● Login to server (Password: P4A2oo8)
● Change your password!!!
● Take a look at the website of the course

www.astro.uni-bonn.de/~rschaaf/Python2008
● Explore the official Python website

www.python.org
● Determine the installed python version and

locate the documentation for this version at
www.python.org

http://www.astro.uni-bonn.de/~rschaaf/Python2008
http://www.python.org/

Numbers, variables, math and while

● Python's numerical types
● Operators for numerical types
● Variables, variable names, and

assignment to variables
● The math module from the Standard

Library
● Loops with the while statement

Integers

>>> 2

>>> 0

>>> -4711

>>> 07, 022 # Octal literals

>>> 0x9, 0xa, 0XF # Hex literals

>>> 17 + 4 # expression

>>> 0xa - 2

>>> 23 ** (2+3)

>>> 7 / 2, 7 / -2 # Int division

Floats

>>> 2.3

>>> -4.

>>> 0.1, .1

>>> 2.99E10, 6.62607e-27, -1e10

>>> 1.7 + .4

>>> 17. + 4

>>> 7./2., 7./2, 7/2.

Arithmetic operators

>>> 1+.4

>>> 2-3

>>> 25*-17

>>> 2.**100

>>> 2/3, 2/-3 # Int division

>>> 2./3 # Float division

>>> 2.//3, 2.//3 # Floor division

>>> 7%3, 7%-3 # Modulus

>>> 7.%3, 7.2%2.5 # Modulus

>>> # (n//m)*m + (n%m) = n

Bitwise operators

>>> 17 & 5 # Bitwise AND

>>> 17 | 5 # Bitwise OR

>>> 17 ^ 5 # Bitwise EXOR

>>> ~17 # Bitwise complement

>>> 17 << 3 # Bitshift left

>>> 0x11 >> 2 # Bitshift right

Long integers, conversion

>>> 2**1000

>>> 2L, 3l

>>>11
1111111111111111

>>> 2**1001 � 2<<1000 # - has higher

>>> 2**1001 � (2<<1000) # precedence than <<

>>> float(2), float(2**1000)

>>> float(2**2000)

>>> int(2.3), int(-2.3)

>>> int(2**1000), long(2)

Complex numbers

>>> 2.+3j, 2-3J # complex literals

>>> j # will not work

>>> 1J # but this will

>>> complex(1,2)

>>> # Watch operator precedence:

>>> 1+1j*2, (1+1j)*2

>>> (2.+3j).real, (2+3j).imag

Variables

>>> x = 2 # Assign variable

>>> x # Display

>>> x + 3 # Use variable

>>> y = x + 3 # New variable

>>> x = x + 1 # Assign new value

>>> x += 1 # Shorthand; no x++

>>> x = 12.3 + 98.7j # Change type

>>> x **= 2j

Some stunts

>>> x, y = 2, 3

>>> x, y = y, x

>>> x = y = z = 0

Names

>>> xy, Xy = 2, 3 # Case sensitive

>>> 9x = 2 # Must begin w. letter

>>> x9 = 2 # ok

>>> _x = 2 # ok, but special

>>> if = 2 # must not be keyword

List of reserved keywords

and del from not while

as elif global or with

assert else if pass yield

break except import print

class exec in raise

continue finally is return

def for lambda try

None

as with

Built-in math functions

>>> abs(-2.)

>>> abs(1+1j)

>>> max(1,2,3,4)

>>> min(1,2,3,4)

>>> hex(17), oct(-5)

>>> round(1.23456, 2)

The math module

>>> import math # math module

>>> math.<TAB> # Explore with tab

>>> # Print doc strings:

>>> print math.__doc__

>>> print math.sinh.__doc__

>>> # Use module:

>>> math.sinh(math.pi/2)

>>> math.e**(-1j*math.pi)

>>> math.pi = 3 # Abuse! No way back!

Comparisons

>>> x = 2 # Assignment

>>> x == 2 # Testing equality

>>> x != 0

>>> x < 1

>>> x >= 2.

>>> 1 < x <= 3 # (1<x) and (x<=3)

>>> 3 < x <= 1

>>> 1 < x >= 0

The while statement

>>> x = 0

>>> while x<=10: # Bool. expr.

... print x, x**2 # Indentation

... x += 1

... <RETURN>

>>> print x # Unindented again

The while statement

>>> while x: # Arithmetic expr.

... print x

... x -= 1

... <RETURN>

>>> x = 1

>>> while x:

... print x

... <RETURN> # Abort with <Ctrl>-c

Nested while statements

>>> i = j = 0

>>> while i<=5:

... j = 0 # outer loop

... while j<=i:

... print j-i, # inner loop

... j += 1 # inner loop

... i += 1 # outer loop

... print # outer loop

... <RETURN>

Indentation

● Top level must not be indented
● It does not matter how much blanks

you use, but:
● Uniform within each block
● Better avoid tabs
● Most people use 4 blanks per level

Exercises

● Determine the smallest positive float of
our Python installation by using a while-
loop

● Determine the numerical accuracy of
the installation. Add smaller and
smaller numbers to 1. and compare the
result with 1.

● Determine the largest positive float of
the installation. Import numpy and
compare larger and larger numbers
with numpy.inf

