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Marginalisation


Dunkley et al. 2009

€ 

p(ϑ 2 | x) = p(θ | x) dθ1dθ3... dθn∫

Marginal probability: posterior probability of a given parameter 
regardless of the value of the others. It is obtained by integrating the 
posterior over the parameters that are not of interest.


Marginal errors 
characterise the 
width of the 
marginal posterior 
distributions.




Pitfalls of Bayesian inference


•  There is no “correct” way to choose a prior. 
Bayesian inference requires skills to translate 
subjective prior beliefs into a mathematically 
formulated prior.


•  It can produce posterior distributions which are 
heavily influenced by priors.


•  It often comes with high computational costs.
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Pittfalls of frequentist inference
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The likelihood principle


 


•  The likelihood principle is a conjecture that has been 

formulated based on the work of Fisher (in the 1920s) as well 
as Barnard, Savage and Birnbaum (in the 1960s).


•  It states that, in the inference for the model parameters θi 
after the data x have been observed, all the relevant 
experimental information is contained in the likelihood 
function.


•  A second statement is that two likelihood functions contain 
the same information about the model parameters if they are 
proportional to each other.
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Testing fairness of a coin I

•  Experiment 1: flipping a coin one gets the sequence HTHHTHHHHHHT 

Can you conclude that there is evidence against an unbiased coin?

Frequentist analysis: (how rare something as extreme should happen if 
the experiment is repeated many times and the coin is fair?)

If the experiment consists of flipping a coin 12 times, then

binomial statistical model: 



Null hypothesis H0: θ= 0.5 (θ= prob. to get head)

Alternative hypothesis: H1: θ> 0.5 

Let’s compute the probability to find equal or more extreme results by 
repeating the experiment (the so-called p-value)





In 7.3 per cent of the cases we will find 9 heads or more. This is above 
the conventional 5% C.L. threshold. We cannot reject H0 at the 5% C.L.
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P(x |θ ) =
x

12⎛

⎝
⎜
⎞

⎠
⎟  θ x  (1−θ )12−x

P(x ≥ 9 |θ ) =
x=9

12

∑
x

12⎛

⎝
⎜
⎞

⎠
⎟  θ x  (1−θ )12−x = 0.073



Testing fairness of a coin II

•  Experiment 2: flipping a coin one gets the sequence HTHHTHHHHHHT 

Can you conclude that there is evidence against an unbiased coin?

Frequentist analysis: (how rare something as extreme should happen if 
the experiment is repeated many times and the coin is fair?) 

If the experiment consists of flipping a coin until one gets 3 tails, then

negative binomial statistical model: 



Null hypothesis H0: θ= 0.5 (θ= prob. to get head)

Alternative hypothesis: H1: θ> 0.5 

Let’s compute the probability to find equal or more extreme results by 
repeating the experiment





In 3.27 per cent of the cases we will find 9 heads or more. This is below 
the conventional 5% C.L. threshold. We can reject H0 at the 5% C.L.
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P(x |θ ) =
3−1

3+x−1⎛

⎝
⎜

⎞

⎠
⎟  θ x  (1−θ )3

P(x ≥ 9 |θ ) = P(x |θ )
x=9

12

∑ = 0.0327



•  Frequentist inference depends on the question asked although 
the data are exactly the same.


•  P-values change according to the decision procedure (i.e. the 
procedure with which the experiment is repeated).


•  This is a violation of the likelihood principle and a source of 
criticism towards frequentist statistics (from the Bayesians)


•  In Bayesian statistics one would build the likelihood function 
and the posterior probability for θ. Do this as an exercise in 
the two cases!
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How can we do this in practice?
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Markov Chain Monte Carlo

Andrey Andreyevic Markov


(1856-1922)

Monte Carlo Casino


(1863-now)
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Markov Chain Monte Carlo


•  WHAT? A numerical simulation method


•  AIM: Sampling a given distribution function (known 
as the target density) 


   i.e. generate a finite set of points in some 
parameter space that are drawn from a given 
distribution function. 


•  HOW? By building a Markov chain that has the 
desired distribution as its equilibrium distribution
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Markov chains


•  A Markov chain is a sequence of random variables 
(or vectors) Xi (where i is an integer index: i=0,…,N) 
with the property that the transition probability


  





  This means that the future of the chain does not 

depend on the entire past but only on the present 
state of the process.
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€ 

P(xN +1 | x0,...,xN ) = P(xN +1 | xN )



Monte Carlo



•  The term Monte Carlo method refers, in a very general 

meaning, to any numerical simulation which uses a computer 
algorithm explicitly dependent on a series of (pseudo) random 
numbers


•  The idea of Monte Carlo integration was first developed by 
Enrico Fermi in the 1930s and by Stanislaw Ulam in 1947


•  Ulam and von Neumann used it for classified work at Los 
Alamos and as a “code name” for the project chose “Monte 
Carlo” as a reference to the famous Casino in Monaco.  
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€ 

f (x)p(x)dx ≈ 1
N

f (xi)
i=1

N

∑∫     [where the xi are samples from p(x)]



MCMC and Bayesian statistics

•  The MCMC method has been very successful in modern Bayesian 

computing.

•  In general (with very few exceptions) posterior densities are too 

complex to work with analytically.

•  With the MCMC method, it is possible to generate samples from an 

arbitrary posterior density and to use these samples to approximate 
expectations of quantities of interest.


•  Most importantly, the MCMC is guaranteed to converge to the 
target distribution under rather broad conditions, regardless of 
where the chain was initialized. 


•  Furthermore, if the chain is run for very long time (often required) 
you can recover the posterior density to any precision.


•  The method is easily applicable to models with a large number of 
parameters (although the “curse of dimensionality” often causes 
problems in practice).
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MCMC algorithm

•  Choose a random initial starting point in parameter space, and 

compute the target density


•  Repeat:

ü  Generate a step in parameter space from a proposal 

distribution, generating a new trial point for the chain.

ü  Compute the target density at the new point, and accept it 

or not with the Metropolis-Hastings algorithm (see next 
slide).


ü  If the point is not accepted, the previous point is repeated in 
the chain.


•  End Repeat




The Metropolis algorithm

Nicholas Constantine Metropolis


(1915-1999)


“Equation of state calculation by fast 
computing machines”


Metropolis et al. (1953)
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•  After generating a new MCMC 
sample using the proposal 
distribution, calculate


•  Then sample u from the uniform 
distribution U(0,1)


•  Set θt+1=θnew if u<r; otherwise 
set θt+1=θt


•  Note that the number of 
iterations keeps increasing 
regardless of whether a proposed 
sample is accepted.


€ 

r = probability of acceptance = min f (θnew )
f (θold )

,1
# 

$ 
% 

& 

' 
( 



The Metropolis algorithm

•  It can be demonstrated that the Metropolis algorithm works.


•  The proof is beyond the scope of this course but, if you are 
curious, you can check standard statistics textbooks including 
Roberts (1996) and Liu (2001).


•  You are not limited to a symmetric random-walk proposal 
distribution in establishing a valid sampling algorithm. A more 
general form, now known as the Metropolis-Hastings 
algorithm, was proposed by Hastings (1970). In this case:
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€ 

r = probability of acceptance = min f (θnew )q(θt |θnew )
f (θold )q(θnew |θt )
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The proposal distribution


•  If one takes too small steps, it takes long time to 
explore the target and the different entries of the 
chain are very correlated


•  If one takes too large steps, almost all trials are 
rejected and the different entries of the chain are 
very correlated


•  There is an optimal proposal distribution (easy to 
identify if we knew already the target density) 




Effect of the sampling distribution
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Gaussian 
proposal 
distribution 
with σ= 0.2, 
acceptance 
rate =85.1%


Gaussian 
proposal 
distribution 
with σ= 10.2, 
acceptance 
rate =4.1%


Gaussian 
proposal 
distribution 
with σ= 2.2, 
acceptance 
rate =37.9%




Mixing


Bad mixing
 Metastability
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Mixing refers to the degree to which the Markov chain explores the support of the 
posterior distribution. Poor mixing may stem from inappropriate proposals (if one is using 
the Metropolis-Hastings sampler) or from attempting to estimate models with highly 
correlated variables.




Burn-in 

•  Mathematical theorems guarantee 

that the Metropolis algorithm will 
asymptotically converge to the 
target distribution independently 
of its starting point.


•  However, there will be an initial 
transient of unknown length during 
which the chain reaches its 
stationary state.


•  In practice, you have to assume 
that after Nb iterations, the chain 
converged and started sampling 
from its target distribution.


•  The value of Nb is called the burn-
in number.
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Issues with MCMC


•  You have to decide whether the Markov Chain has 
reached its stationary distribution


•  You have to decide the number of iterations to 
keep after the Markov Chain has reached 
stationarity


•  Convergence diagnostics help to resolve these 
issues. Note, however, that most diagnostics are 
designed to verify a necessary but NOT sufficient 
condition for convergence.
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Visual analysis via Trace Plots

•  The simplest diagnostic is obtained by plotting the value of one 

model parameter versus the simulation index (i.e. the first point in 
the Markov chain has index 1, the second 2, and so on). 


•  This is called a Trace Plot.


•  As we will see, a trace tells you if a longer burn-in period is needed, 
if a chain is mixing well, and gives you an idea about the stationary 
state of the chain.


•  Trace plots must be produced for all the parameters, not only for 
those of interest! If some of parameters have bad mixing you cannot 
get accurate posterior inference for parameters that appear to 
have good mixing.
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Example I
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 The figure displays a “perfect” trace plot, not easy to achieve in high-dimensions 


If  the 
chain has 
reached 
stationarity 
the mean 
and the 
variance of 
the trace 
plot should 
keep 
relatively 
constant. 


A chain that 
mixes well 
traverses 
the 
posterior 
space 
rapidly, and 
it can jump 
from a 
remote 
region of 
the 
posterior to 
another in 
relatively 
few steps.   




Example II
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 If you have a chain like this, increase the burn-in sample size.


This chain 
starts at a 
very 
remote 
location 
and makes 
its way to 
the 
targeting 
distribution
.


This chain 
mixes well 
locally and 
travels 
relatively 
quickly to 
the target 
distribution, 
reaching it 
in a few 
hundred 
iterations.




Example III
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 In order to obtain a given number of independent samples you need to run the 
chain for much longer.


This trace 
plot shows 
marginal 
mixing. The 
chain is 
taking 
small steps 
and does 
not 
traverse 
its 
distribution 
quickly.


This type of 
trace plot is 
typically 
associated 
with high 
correlation 
among the 
samples. The 
chain takes 
too long to 
forget 
where it 
was before.




Example IV
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 This type of chain is entirely unsuitable for making parameter inferences!


This chain 
has serious 
problems. It 
mixes very 
slowly, and it 
does not give 
any evidence 
of 
convergence.


You would 
want to try 
to improve 
the mixing of 
this chain. 
For example, 
you might 
consider 
changing the  
proposal 
distribution 
or 
reparameteri
zing your 
model.




Convergence
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Verde et al. 2003, first-year WMAP data


Although the trace plot on the left may appear to indicate that the chain has converged after 
a burn-in of a few hundred steps, in reality it has not fully explored the posterior surface. 



This is shown on the right where two chains of the same length are plotted. Using either of 
these two chains at this stage will give incorrect results for the best-fit cosmological 
parameters and their errors.




Statistical diagnostics


•  Gelman-Rubin: uses parallel chains with dispersed 
initial values to test whether they all converge to 
the same target distribution.


•  Geweke: tests whether the mean estimates of the 
parameters have converged by comparing means 
from the early and latter part of the Markov 
chain.


•  Raftery-Lewis: Evaluates the accuracy of the 
estimated percentiles by reporting the number of 
samples needed to reach the desired accuracy.


•  And many, many, more... 


C. Porciani
 Estimation & forecasting
 103




C. Porciani
 Estimation & forecasting
 104




How to plot the results
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Public codes for MCMC in cosmology
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Public codes for MCMC in cosmology
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http://baudren.github.io/montepython.html



Bayesian model comparison


•  Suppose you have some data 

•  You want to fit them with some model

•  More than a model is available with a different 

number of free parameters (e.g. vanilla ΛCDM, 
ΛCDM + massive neutrinos, ΛCDM + curvature, 
CDM + dynamic dark energy)


•  How do you choose the “best model”?


•  Central problem in learning: how to balance 
“goodness of fit” criteria against the complexity of 
models


•  We want to avoid “overfitting”
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An example


•  What function would you 
use to fit these data?


•  Constant? y=c (1 parameter)

•  Linear? y=bx+c              

(2 parameters)

•  Quadratic? y=ax2+bx+c     

(3 parameters)
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Maximum likelihood solution


•  Constant fit: χ2
min=19.33


•  Linear fit: χ2
min=10.02


•  Quadratic fit: χ2
min=7.79


•  Which one should be 
preferred?


•  I could get χ2
min=0 by 

using a polynomial of 
degree 10
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Bayes factor
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€ 

K =
P(M1 | ! x )
P(M2 | ! x )

= BF ×
π (M1)
π (M2)

BF =
P(! x | M1)
P(! x | M2)

=
L( ! x |

! 
ϑ 1,M1) π (

! 
ϑ 1 | M1) d

! 
ϑ 1∫

L( ! x |
! 
ϑ 2,M2) π (

! 
ϑ 2 | M2) d

! 
ϑ 2∫

Let’s write Bayes theorem for the models in odds form:


In words:      posterior odds = Bayes factor x prior odds        
where the Bayes factor (BF) is given by the evidence ratio for the 
two models.

The prior ratio is often taken as unity. The evidence ratio penalizes 
for unnecessary complexity in the models: models are penalized if a 
small part of their prior parameter range matches the data (Occam 
factor). 




Jeffrey’s scale


Odds ratio
 Strength of evidence

1<K<3
 Barely worth mentioning

3<K<10
 Substantial

10<K<30
 Strong

30<K<100
 Very strong


K>100
 Decisive
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Evidence and Bayes factors

Evidence:

•  Constant fit: 5.04 x 10-5

•  Linear fit: 2.92 x 10-3

•  Quadratic fit: 1.93 x 10-3


•  The linear fit is slightly 
preferred to the quadratic 
even though it has a worse 
χ2

min (BF=1.5 while BF=57.9)


•  I generated the data 
adding Gaussian noise with 
unit variance to the 
relation y=x/2 which was 
indeed linear
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68.3 per cent credibility intervals



0.48<b<0.87       -0.83<c<0.53



they can be written as:



b=0.67+0.20

-0.19     c=-0.15±0.68



