
Probability of the data versus 
likelihood of the parameters


•  Suppose you are counting how many cars pass in front of your 
window on Sundays between 9:00 and 9:02 am. Counting experiments 
are generally well described by the Poisson distribution. Therefore, 
if the mean counts are λ, the probability of counting n cars follows 
the distribution:


•  This means that if you repeat the experiment many times, you will 
measure different values of n following the frequency P(n). Note 
that the sum over all possible n is unity. 


•  Now suppose that you actually perform the experiment once and you 
count 7. Then, the likelihood for the model parameter λGIVEN the 
data is: 
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€ 

P(n | λ) =
λne−λ

n!

€ 

L(λ) = P(7 | λ) =
λ7e−λ

5040



The likelihood function

•  This is a function of λ only but it is NOT a probability distribution 

for λ! It simply says how likely it is that our measured value of n=7 
is obtained by sampling a Poisson distribution of mean λ. It says 
something about the model parameter GIVEN the observed data.
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The likelihood function

•  Let us suppose that after some time you repeat the experiment and 

count 4 cars. Since the two experiments are independent, you can 
multiply the likelihoods and obtain the curve below. Note that now 
the most likely value is λ=5.5 and the likelihood function is 
narrower than before, meaning that we know more about λ.
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Likelihood for Gaussian errors

•  Often statistical measurement errors can be described by 

Gaussian distributions. If the errors σi of different 
measurements di are independent:


•  Maximizing the likelihood corresponds to finding the values of 
the parameters θ= {θ1,…,θn} which minimize the χ2 
function (weighted least squares method).
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€ 

L(θ) = P(d |θ) =
1
2πσ i

2
exp −

di −mi(θ)( )
2σ i

2

2& 

' 
( 
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* 
+ 
+ i=1

N

∏

€ 

−lnL(θ) =
(di −mi(θ))

2

2σ i
2 + const.= χ 2(θ,d)

2i=1

N

∑ + const.



The general Gaussian case

•  In general, errors are correlated and 


where Cij=<εi εj> is the covariance matrix of the errors. 



•  For uncorrelated errors the covariance matrix is diagonal and 

one reduces to the previous case.


•  Note that the covariance matrix could also derive from a 
model and then depend on the model parameters. We will 
encounter some of these cases in the rest of the course. 
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€ 

−lnL(θ) =
1
2

di −mi(θ)[ ] Cij
−1 d j −m j (θ)[ ] + const.= χ 2(θ,d)

2j=1

N

∑
i=1

N

∑ + const.
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The Likelihood function: a summary

•  In simple words, the likelihood of a model given a dataset is proportional to 

the probability of the data given the model


•  The likelihood function supplies an order of preference or plausibility of the 
values of the free parameters θi by how probable they make the observed 
dataset


•  The likelihood ratio between two models can then be used to prefer one to 
the other


•  Another convenient feature of the likelihood function is that it is 
functionally invariant. This means that any quantitative statement about the 
θi  implies a corresponding statements about any one to one function of the 
θi by direct algebraic substitution
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Maximum Likelihood

•  The likelihood function is a statistic (i.e. a function of the data) which gives 

the probability of obtaining that particular set of data, given the chosen 
parameters θ1, … , θk of the model. It should be understood as a function of 
the unknown model parameters (but it is NOT a probability distribution for 
them)


•  The values of these parameters that maximize the sample likelihood are 
known as the Maximum Likelihood Estimates or MLE’s.


•  Assuming that the likelihood function is differentiable, estimation is done by 
solving


 


•  On the other hand, the maximum value may not exists at all.


€ 

∂L(θ1,...,θk )
∂θi

= 0

€ 

∂ lnL(θ1,...,θk )
∂θi

= 0or




Back to counting cars

•  After 9 experiments we collected the following data: 7, 4, 2, 6, 4, 5, 

3, 4, 5. The new likelihood function is plotted below, together with a 
Gaussian function (dashed line) which matches the position and the 
curvature of the likelihood peak (λ=4.44). Note that the 2 curves 
are very similar (especially close to the peak), and this is not by 
chance.
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Score and information matrix

•  The first derivative of the log-likelihood function with respect to the 

different parameters is called the Fisher score function: 


•  The Fisher score vanishes at the MLE.



•  The negative of the Hessian matrix of the log-likelihood function with 

respect to the different parameters is called the observed information 
matrix: 




•  The observed information matrix is definite positive at the MLE. Its 

elements tell us how broad is the likelihood function close to its peak 
and thus with what accuracy we determined the model parameters.
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€ 

Si =
∂ lnL(θ)
∂θi

€ 

Oij = −
∂ 2 lnL(θ)
∂θi ∂θ j



Example

1 datapoint


Low information

Large uncertainty in λ


9 datapoints

High information


Small uncertainty in λ
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Fisher information matrix

•  If we took different data, then the likelihood function for the 

parameters would have been a bit different and so its score function 
and the observed information matrix.


•  Fisher introduced the concept of information matrix by taking the 
ideal ensemble average (over all possible datasets of a given size) of 
the observed information matrix (evaluated at the true value of the 
parameters).




•  Under mild regularity conditions, it can been shown that the Fisher 

information matrix also corresponds to 






i.e. to the covariance matrix of the scores at the MLE’s.
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€ 

Fij = −
∂ 2 lnL(θ)
∂θi ∂θ j

€ 

Fij =
∂ lnL(θ)
∂θi

∂ lnL(θ)
∂θ j



Cramér-Rao bound



•  The Cramér-Rao bound states that, for ANY unbiased 

estimator of a model parameter θi, the measurement error 
(keeping the other parameters constant) satisfies


•  For marginal errors that also account for the variability of 
the other parameters (see slide 75 for a precise definition), 
instead, it is the inverse of the Fisher information matrix 
that matters and
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€ 

Δθi ≥
1
Fii

€ 

Δθi ≥ Fii
−1



Fisher matrix with Gaussian errors

•  For data with Gaussian errors, the Fisher matrix assumes the 

form (the notation is the same as in slide 43)




where










(note that commas indicate derivatives with respect to the 
parameters while data indices are understood)
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€ 

Fij =
1
2
Tr C−1C,i C

−1C, j +C
−1Mij[ ]

€ 

Mij = m,i m, j
T +m, j m,i

T

Information from the signal
Information from the noise
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Properties of MLE’s


As the sample size increases to infinity (under weak regularity conditions):



•  MLE’s become asymptotically efficient and asymptotically unbiased

•  MLE’s asymptotically follow a normal distribution with covariance matrix (of the 

parameters) equal to the inverse of the Fisher’s information matrix (that is 
determined by the covariance matrix of the data).


However, for small samples, 



•  MLE’s can be heavily biased and the large-sample optimality does not apply
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Maximizing likelihood functions



•  For models with a few parameters, it is possible to evaluate 

the likelihood function on a finely spaced grid and search for 
its minimum (or use a numerical minimisation algorithm).  


•  For a number of parameters >>2 it is NOT feasible to have a 
grid (e.g. 10 point in each parameter direction, 12 parameters 
= 1012 likelihood evaluations!!!)


•  Special statistical and numerical methods needs to be used to 
perform model fitting.


•  Note that typical cosmological problems consider models with 
a number of parameters ranging between 6 and 20.
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Forecasting

•  Forecasting is the process of estimating the 

performance of future experiments for which data 
are not yet available


•  It is a key step for the optimization of 
experimental design (e.g. how large must be my 
survey if I want to determine a particular 
parameter to 1% accuracy?)


•  The basic formalism has been developed by Fisher 
in 1935
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Figure of merit


Figure of merit = 1 / (area of the ellipse) 
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Fisher 4cast (Matlab toolbox)
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Counting cars, again

•  In our study of the car counts we implicitly assumed that all the 

values of λ are equally likely a priori (i.e. before we started taking 
the data). However, we didn’t consider that an automatic gate 
regulates the traffic in our street and does not allow more than 8 
cars to enter every 10 minutes. Therefore λ cannot be larger than 
8 and the likelihood derived from our counts should have been 
truncated at λ=8.


•  Also, we live close to a church and whenever there is a wedding the 
traffic is more intense than usual. This means that on wedding days 
a higher value of λ is more likely than on non-wedding days.


•  Moreover, a fellow that had been living in our flat before us did the 
same exercise and told us that he obtained λ=4.2±0.5.


•  Is there a way to account for all this information in our study? 
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The Bayesian way


Harold Jeffreys (1891-1989)
Bruno de Finetti (1906-1985)




What is probability?

•  Probability is a modern concept first discussed in a correspondence 

between Blaise Pascal and Pierre de Fermat in 1654


•  There is no unique definition of probability, statisticians are divided 
into different schools with contrasting views


•  Classic definition: The probability of an event is the ratio of the 
number of cases favorable to it, to the number of all cases possible 
when nothing leads us to expect that any one of these cases should 
occur more than any other, which renders them, for us, equally 
possible. (Pierre-Simon de Laplace, 
Théorie analytique des probabilités, 1812)


•  This is based on the “principle of insufficient reason” (or principle of 
indifference) which states that when cases are only distinguishable 
by their name they should be assigned the same probability
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What is probability?


•  Frequentist: the long-run expected frequency of 
occurrence of a random event


•  Axiomatic: given a sample space Ω, a σ-algebra F of events E (a 
set of subsets of Ω), we call probability measure a real function on 
F such that P(E)≥0, P(Ω)=1, and for any countable series of pairwise 
disjoint events P(E1 U E2 U … U EN)=P(E1)+P(E2)+…+P(EN). These are 
known as Kolmogorov axioms. 


•  Bayesian: a measure of the degree of belief (the 
plausibility of an event given incomplete knowledge)




Reasoning with beliefs

•  There is 90% chance that today it will rain


•  There is a 30% chance that my favourite football team will win 
the league this year


•  There is a 10% chance that I will fail the observational 
cosmology examination


•  There is a 0.1% chance that I will die before being 30


•  There is 68.3% chance that H0 lies between 67 and 73 km/s/
Mpc
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De Finetti’s game�
Can you measure degree of belief?


  Suppose we are on a trip and you say that you are “pretty sure” you 
locked the door of your flat. I want to determine how sure you are.




•  I offer you to play a game: I propose you to draw a marble from a 

bag containing 95 red and 5 blue marbles. If you pick at random a 
red marble, I give you one million euros. Alternatively, I offer you to 
go back home and check the door. If you choose this option and the 
door is locked indeed, I give you one million euros.


•  If you choose to pick a marble, it means that your degree of belief 
is lower than 95% 


•  I can then propose many other rounds of the game by progressively 
reducing the fraction of red marbles until you choose to go back. 
This would measure your degree of belief.
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Posterior probability
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P(x|θ): old name “direct probability”  
It gives the probability of contingent events (i.e. observed data) for a given 
hypothesis (i.e. a model with known parameters θ)

L(θ)=P(x|θ):  modern name “likelihood function” or simply “likelihood”
It quantifies the likelihood that the observed data would have been observed as a 
function of the unknown model parameters (it can be used to rank the plausibility of 
model parameters but it is not a probability density for θ)

P(θ|x):  old name “inverse probability” 
             modern name  “posterior probability”
Starting from observed events and a model, it gives the probability of the hypotheses 
that may explain the observed data (i.e. of the unknown model parameters)   
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Bayes theorem


€ 

p(θ | x) =
p(x |θ)p(θ)

p(x)

Posterior probability 
for the parameters 

given the data

Prior probability 
for the parameters 
(what we know 
before performing 
the experiment)


Likelihood function


Evidence 
(normalization 
constant useful 
for Bayesian 
model selection)


€ 

p(x |θ) = L(x |θ)

€ 

p(x) = p(x |θ) p(θ) dθ∫
Pierre Simon (Marquis de) 
Laplace (1749-1827) 


Rev. Thomas Bayes  (1702-1761) 




Bayes theorem
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€ 

P(θ | x) =
L(x |θ) π (θ)

E(x)

Let us re-write Bayes theorem emphasizing that all the probabilities 
that we generically called “p” are actually different functions:




Bayes theorem visually
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Prior

Likelihood

Posterior




Priors

•  Non-informative: if it has a minimal impact on the posterior 

distribution (i.e. it is “flat” with respect to the likelihood 
function). Non-informative priors are also called “vague”, 
“diffuse” or “flat”.


•  Improper: if                     e.g. uniform prior on the real 
line. Generally leads to a proper posterior but, if also the 
posterior is improper, inference is invalid.


•  Informative: a prior which is not dominated by the likelihood. 
Must be handled with care in actual practice. On the other 
hand, illustrates the power of the Bayesian method: 
information gathered from previous study, past experience, or 
expert opinion can be combined with current information in a 
natural way 
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€ 

π (ϑ )dθ =∞∫



Not very informative prior
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Prior

Likelihood

Posterior




Very informative prior
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Prior

Likelihood

Posterior
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Bayesian estimation

•  In the Bayesian approach to statistics, population parameters are associated 

with a posterior probability which quantifies our DEGREE OF BELIEF in the 
different values


•  Sometimes it is convenient to introduce estimators obtained by minimizing the 
posterior expected value of a loss function


•  For instance one might want to minimize the mean square error, which leads 
to using the mean value of the posterior distribution as an estimator


•  If, instead one prefers to keep functional invariance, the median of the 
posterior distribution has to be chosen


•  Remember, however, that whatever choice you make is somewhat arbitrary 
as the relevant information is the entire posterior probability density.
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Estimation: frequentist vs Bayesian


•  Frequentist: there are TRUE population parameters 
that are unknown and can only be estimated by 
the data


•  Bayesian: only data are real. The population 
parameters are an abstraction, and as such some 
values are more believable than others based on 
the data and on prior beliefs.
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Confidence vs. credibility intervals

•  Confidence intervals (Frequentist): measure the variability due to sampling 

from a fixed distribution with the TRUE parameter values. If I repeat the 
experiment many times, what is the range within which 95% of the results 
will contain the true values?


•  Credibility interval (Bayesian): For a given significance level, what is the 
range I believe the parameters of a model can assume given the data we 
have measured?


•  They are profoundly DIFFERENT things even though they are often confused. 
Sometimes practitioners tend use the term “confidence intervals” in all cases 
and this is ok because they understand what they mean but this might be 
confusing for the less experienced readers of their papers. PAY ATTENTION!



