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Questions?




Cosmological parameters


•  A branch of modern cosmological research focuses on 
measuring cosmological parameters from observed 
data (e.g. the Hubble constant, the cosmic density of 
matter, etc.).


•  In this class we will review the main techniques used 
for model fitting (i.e. extracting information on 
cosmological parameters from existing observational 
data) and forecasting (i.e. predicting the uncertainty 
on the parameters when future experiments will 
become available). The latter is a crucial ingredient 
for optimizing experimental design.
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Key problems


•  How do you fit a model to data?


•  How do you incorporate prior knowledge?


•  How do you merge multiple sources of information?


•  How do you treat uncertainties in model 
parameters?
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Example: power spectrum of CMB 
temperature fluctuations


Variance at 
multipole l 
(angle ~180o/l)




C. Porciani
 Estimation & forecasting
 6


Dunkley et al. 2009
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Dunkley et al. 2009
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The current state of the art 

Bennett 2006 
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What is the meaning of these plots?

•  What’s the difference between the 1D and the 2D 

plots?


•  What is a confidence interval?


•  What is a credibility interval?


•  What does marginalisation mean?


•  What’s the difference between the frequentist and 
the Bayesian interpretation of statistics?




Basic introduction to statistics
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Descriptive statistics
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Input

•  a set of data


Output

•  The sample mean or median 

•  The sample variance

•  A histogram of one or more variables

•  A scatterplot between different variables

•  Correlation coefficient between different variables




Statistical inference
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Input:

•  a set of data

•  a statistical model of the random process that generates the data 

(a set of assumptions, e.g. Gaussian or Poisson distributed with some free parameters)


Output: 

•  A point estimate (e.g. the value that best approximates a model parameter) 

•  A set estimate (e.g. a confidence or credibility interval for a model parameter)

•  Rejection of a hypothesis to some confidence level

•  Classification of data points into groups




Statistical hypothesis testing

•  One of the classical applications of statistics


•  It generally consists of three steps



1.  Formulate the “null hypothesis” H0 and an  “alternative 

hypothesis”. The null hypothesis (i.e. what one is trying to 
rule out) is often “devil’s advocate position”, e.g. “treatment 
with a given drug does not lead to any improvement of a 
given physical condition”. An alternative hypothesis could be 
“treatment with the same drug removes a specific symptom 
or prolongs life expectancy”.
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Statistical hypothesis testing II


2.  Pick a “test statistic” S that will be used to make the 
inference (i.e. a method to decide if the experimental data 
favor one hypothesis with respect to the other).


3.  Pick a “confidence level” that will fix a threshold T on the 
value of the statistic for the inference process, i.e. if S>T 
the null hypothesis is ruled out at the chosen confidence 
level (this part will become clearer later on, for the moment 
just worry about understanding the philosophy behind the 
method). 
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Statistical hypothesis testing III

•  Statistical hypothesis testing is a decisional method based on 

limited data (e.g. drug efficiency, metal detector at airport, 
pregnancy test) and as such can (and will) make mistakes.


•  Statisticians generally distinguish two types of errors:




•  The details of the test method (i.e. which test statistic and 

what confidence level) can be tuned to optimize the blend of 
Type I and Type II errors depending on the application.
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H0 is true
 H0 is false

Test fails to 
reject H0


Correct inference

(True positive)


Type II error

(False negative)


Test rejects H0
 Type I error

(False positive)


Correct inference

(True negative)




Sampling and estimation
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Population and sample

•  A population is any entire 

collection of objects (people, 
animals, galaxies) from which 
we may collect data. It is this 
entire group we are interested 
in, which we wish to describe 
or draw conclusions about.


•  A sample is a group of units 
selected from the population 
for study because the 
population is too large to study 
in its entirety. For each 
population there are many 
possible samples.




   Sampling


•  Selection of observations intended 
to yield knowledge about a 
population of concern


•  Social sciences: census, simple 
random sampling, systematic 
sampling, stratified sampling, etc.


•  Sample-selection biases (also 
called selection effects) arise if 
the sample is not representative 
of the population


•  In astronomy often observational 
selection effects must be modeled 
a posteriori because sample-
selection is determined by 
instrumental limits




Example: extra-solar planets from 
Doppler surveys


Mayor et al. 2009

€ 

vobs =
mp

Ms

GMs

r
sin(i)

The method is best at detecting “hot Jupiters”, 
very massive planets close to the parent star. 
Current ground-based spectrographs (e.g. 
HARPS, HIRES) can measure radial velocities 
of approximately 1 m/s corresponding to 4 
Earth masses at 0.1 AU and 11 Earth masses at 
1 AU. time



Understanding the selection effects 
is often the crucial element of a 

paper in astronomy!




What is estimation?

•  In statistics, estimation (or inference) refers to the process by 

which one makes inferences (e.g. draws conclusions) about a 
population, based on information obtained from a sample. 


•  A statistic is any measurable quantity calculated from a sample of 
data (e.g. the average). This is a stochastic variable as, for a given 
population, it will in general vary from sample to sample.


•  An estimator is any quantity calculated from the sample data which 
is used to give information about an unknown quantity in the 
population (the estimand).


•  An estimate is the particular value of an estimator that is obtained 
by a particular sample of data and used to indicate the value of a 
parameter. 




A simple example

•  Population: people in this room


•  Sample I: people sitting in the middle row                  
Sample II: people whose names start with the letter M


•  Statistic: average height


•  I can use this statistic as an estimator for the average 
height of the population obtaining different results from the 
two samples




PDF of an estimator


•  Ideally one can consider all 
possible samples 
corresponding to a given 
sampling strategy and build 
a probability density 
function (PDF) for the 
different estimates


•  We will use the 
characteristics of this PDF 
to evaluate the quality of 
an estimator
 Value of estimated statistic



Bias of an estimator


•  The bias of an estimator is the difference between the expectation 
value over its PDF (i.e. its mean value) and the population value


•  An estimator is called unbiased if b=0 while it is called biased 
otherwise


€ 

b( ˆ θ ) = E( ˆ θ ) −θ0 = ˆ θ −θ0 = ˆ θ −θ0

Population value

Mean estimate



Examples

•  The sample mean in an unbiased estimator of the population mean


•  Exercise: Is the sample variance an unbiased estimator of the 
population variance?

€ 

x = 1
N

xi,
i=1

N

∑ E[x ] =
1
N

E[xi] =
N
N

µ = µ
i=1

N

∑

€ 

s2 =
1
N

(xi − x )2
i=1

N

∑ , E[s2] = ???



Examples

•  Note that functional invariance does not hold. 


•  If you have an unbiased estimator S2 for the population 
variance σ2 and you take its square root, this will NOT be an 
unbiased estimator for the population rms value σ!


•  This applies to any non-linear transformation including 
division. 


•  Therefore avoid to compute ratios of estimates as much as 
you can.




Consistent estimators


•  We can build a sequence of estimators by progressively increasing 
the sample size


•  If the probability that the estimates deviate from the population 
value by more than ε«1 tends to zero as the sample size tends to 
infinity, we say that the estimator is consistent




Example

•  The sample mean is a consistent estimator of the population mean
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Var[x ] = E[(x −µ)2] = E[( 1
N

xi −µ
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N
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N 2 E[( xi)
2
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N

Var[x ]→ 0 when N →∞



Relative efficiency




•  Intuition suggests that we should use the estimator that is closer 

(in a probabilistic sense) to the population value. One way to do this 
is to choose the estimator with the lowest variance.


•  We can thus define a relative efficiency as:


•  If there is an unbiased estimator that has lower variance than any 
other for all possible population values, this is called the minimum-
variance unbiased estimator (MVUE) 
€ 

E[( ˆ ϑ 1 −θ0)2]/E[( ˆ ϑ 2 −θ0)2]

Suppose there are 2 or more unbiased estimators 
of the same quantity, which one should we use? 
(e.g. should we use the sample mean or sample 
median to estimate  the centre of a Gaussian 
distribution?)



Efficient estimators

•  A theorem known as the Cramer-Rao bound (see slide 45) 

proves that the variance of an unbiased estimator must be 
larger of or equal to a specific value which only depends on 
the sampling strategy (it corresponds to the reciprocal of the 
Fisher information of the sample)


•  We can thus define an absolute efficiency of an estimator as 
the ratio between the minimum variance and the actual 
variance


•  An unbiased estimator is called efficient if its variance 
coincides with the minimum variance for all values of the 
population parameter θ0




Accuracy vs precision


•  The bias and the variance 
of an estimator are very 
different concepts (see the 
bullseye analogy on the 
right)


•  Bias quantifies accuracy


•  Variance quantifies precision




Desirable properties of an 
estimator


ü  Consistency

ü  Unbiasedness

ü  Efficiency


•  However, unbiased and/or efficient estimators do not always 
exist


•  Practitioners are not particularly keen on unbiasedness. So 
they often tend to favor estimators such that the mean 
square error, MSE=              , is as low as possible 
independently of the bias. 


€ 

E[( ˆ θ −θ0)2]



Minimum mean-square error


•  Note that, 


  


•  A biased estimator with small 
variance can then be preferred 
to an unbiased one with large 
variance 


•  However, identifying the 
minimum mean-square error 
estimator from first principles is 
often not an easy task. Also the 
solution might not be unique  
(the bias-variance tradeoff)


€ 

MSE = E[( ˆ θ −θ0)2] = E[( ˆ θ − E[ ˆ θ ] + E[ ˆ θ ]−θ0)2] =

= E[( ˆ θ − E[ ˆ θ ])2] + (E[ ˆ θ ]−θ0)2] =σ 2( ˆ θ ) + b2( ˆ θ )



Point vs interval estimates

•  A point estimate of a population parameter is a single value of a 

statistic (e.g. the average height). This in general changes with the 
selected sample.


•  In order to quantify the uncertainty of the sampling method it is 
convenient to use an interval estimate defined by two numbers 
between which a population parameter is said to lie


•  An interval estimate is generally associated with a confidence level. 
Suppose we collected many different samples (with the same 
sampling strategy) and computed confidence intervals for each of 
them. Some of the confidence intervals would include the population 
parameter, others would not. A 95% confidence level means that 
95% of the intervals contain the population parameter.




This is all theory but how do we 
build an estimator in practice?


Let’s consider a simple (but common) case.

Suppose we perform an experiment where we measure a real-valued 
variable X. 

The experiment is repeated n times to generate a random sample X1, … , 
Xn of independent, identically distributed variables (iid).

We also assume that the shape of the population PDF of X is known 
(Gaussian, Poisson, binomial, etc.) but has k unknown parameters θ1, 
… , θk  with k<n.



The old way: method of moments


•  The method of moments is a technique for constructing 
estimators of the parameters of the population PDF


•  It consists of equating sample moments (mean, variance, 
skewness, etc.) with population moments 


•  This gives a number of equations that might (or might not) 
admit an acceptable solution


•  There is a much better way that we are going to describe 
now
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Ronald Aylmer Fisher (1890-1962)


“Even scientists need their heroes, and R.A. Fisher was the hero of 20th 
century statistics” (B. Efron)


“Fisher was to statistics what Newton was to Physics” (R. Kass)


I 
oc

ca
sio

na
lly

 m
ee

t 
ge

ne
tic

ist
s 

w
ho

 a
sk

 m
e 

w
he

th
er

 it
 is

 t
ru

e 
th

at
 

th
e 

gr
ea

t 
ge

ne
tic

ist
 R

.A
. F

ish
er

 w
as

 a
ls
o 

an
 im

po
rt

an
t 

st
at

ist
ic
ia
n 

(L
. J

. S
av

ag
e)



Th
e 

gr
ea

te
st

 b
io
lo

gi
st

 s
in
ce

 D
ar

w
in
 (
|R

. D
aw

ki
ns

)




C. Porciani
 Estimation & forecasting
 38


Fisher’s concept of likelihood


•  “Two radically distinct concepts have been confused under the name of 
‘probability’ and only by sharply distinguishing between these can we state 
accurately what information a sample does give us respecting the population from 
which it was drawn.” (Fisher 1921)


•  “We may discuss the probability of occurrence of quantities which can be 
observed…in relation to any hypotheses which may be suggested to explain these 
observations. We can know nothing of the probability of the hypotheses…We may 
ascertain the likelihood of the hypotheses…by calculation from observations:…to 
speak of the likelihood…of an observable quantity has no meaning.” (Fisher 1921)


•  “The likelihood that any parameter (or set of parameters) should have any 
assigned value (or set of values) is proportional to the probability that if this 
were so, the totality of observations should be that observed.” (Fisher 1922)







Probability of the data versus 
likelihood of the parameters


•  Suppose you are counting how many cars pass in front of your 
window on Sundays between 9:00 and 9:02 am. Counting experiments 
are generally well described by the Poisson distribution. Therefore, 
if the mean counts are λ, the probability of counting n cars follows 
the distribution:


•  This means that if you repeat the experiment many times, you will 
measure different values of n following the frequency P(n). Note 
that the sum over all possible n is unity. 


•  Now suppose that you actually perform the experiment once and you 
count 7. Then, the likelihood for the model parameter λGIVEN the 
data is: 
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€ 

P(n | λ) =
λne−λ

n!

€ 

L(λ) = P(7 | λ) =
λ7e−λ

5040



The likelihood function

•  This is a function of λ only but it is NOT a probability distribution 

for λ! It simply says how likely it is that our measured value of n=7 
is obtained by sampling a Poisson distribution of mean λ. It says 
something about the model parameter GIVEN the observed data.
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