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Questions?!



Cosmological parameters!

•  A branch of modern cosmological research focuses on 
measuring cosmological parameters from observed 
data (e.g. the Hubble constant, the cosmic density of 
matter, etc.).!

•  In this class we will review the main techniques used 
for model fitting (i.e. extracting information on 
cosmological parameters from existing observational 
data) and forecasting (i.e. predicting the uncertainty 
on the parameters when future experiments will 
become available). The latter is a crucial ingredient 
for optimizing experimental design.!
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Key problems!

•  How do you fit a model to data?!

•  How do you incorporate prior knowledge?!

•  How do you merge multiple sources of information?!

•  How do you treat uncertainties in model 
parameters?!
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Example: power spectrum of CMB 
temperature fluctuations!

Variance at 
multipole l 
(angle ~180o/l)!
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Dunkley et al. 2009
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Dunkley et al. 2009
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The current state of the art 

Bennett 2006 
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What is the meaning of these plots?!

•  What’s the difference between the 1D and the 2D 
plots?!

•  What is a confidence interval?!

•  What is a credibility interval?!

•  What does marginalisation mean?!

•  What’s the difference between the frequentist and 
the Bayesian interpretation of statistics?!



Descriptive statistics!
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Input!
•  a set of data!

Output!
•  The sample mean or median !
•  The sample variance!
•  A histogram of one or more variables!
•  A scatterplot between different variables!
•  Correlation coefficient between different variables!



Statistical inference!
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Input:!
•  a set of data!
•  a statistical model of the random process that generates the data 

(a set of assumptions, e.g. Gaussian or Poisson distributed with some free parameters)!

Output: !
•  A point estimate (e.g. the value that best approximates a model parameter) !
•  A set estimate (e.g. a confidence or credibility interval for a model parameter)!
•  Rejection of a hypothesis to some confidence level!
•  Classification of data points into groups!



Population and sample!
•  A population is any entire 

collection of objects (people, 
animals, galaxies) from which 
we may collect data. It is this 
entire group we are interested 
in, which we wish to describe 
or draw conclusions about.!

•  A sample is a group of units 
selected from the population 
for study because the 
population is too large to study 
in its entirety. For each 
population there are many 
possible samples.!



   Sampling!

•  Selection of observations intended 
to yield knowledge about a 
population of concern!

•  Social sciences: census, simple 
random sampling, systematic 
sampling, stratified sampling, etc.!

•  Sample-selection biases (also 
called selection effects) arise if 
the sample is not representative 
of the population!

•  In astronomy often observational 
selection effects must be modeled 
a posteriori because sample-
selection is determined by 
instrumental limits !



Example: extra-solar planets from 
Doppler surveys!

Mayor et al. 2009
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The method is best at detecting “hot Jupiters”, 
very massive planets close to the parent star. 
Current experiments (HARPS, HIRES) can 
measure radial velocities of approximately       
1 m/s corresponding to 4 Earth masses at 0.1 
AU and 11 Earth masses at 1 AU.

time



Understanding the selection effects 
is often the crucial element of a 

paper in astronomy!!



What is estimation?!
•  In statistics, estimation (or inference) refers to the process by 

which one makes inferences (e.g. draws conclusions) about a 
population, based on information obtained from a sample. !

•  A statistic is any measurable quantity calculated from a sample of 
data (e.g. the average). This is a stochastic variable as, for a given 
population, it will in general vary from sample to sample.!

•  An estimator is any quantity calculated from the sample data which 
is used to give information about an unknown quantity in the 
population (the estimand).!

•  An estimate is the particular value of an estimator that is obtained 
by a particular sample of data and used to indicate the value of a 
parameter. !



A simple example!
•  Population: people in this room!

•  Sample I: people sitting in the middle row                  
Sample II: people whose names start with the letter M!

•  Statistic: average height!

•  I can use this statistic as an estimator for the average 
height of the population obtaining different results from the 
two samples!



PDF of an estimator!

•  Ideally one can consider all 
possible samples 
corresponding to a given 
sampling strategy and build 
a probability density 
function (PDF) for the 
different estimates!

•  We will use the 
characteristics of this PDF 
to evaluate the quality of 
an estimator! Value of estimated statistic



Bias of an estimator!

•  The bias of an estimator is the difference between the expectation 
value over its PDF (i.e. its mean value) and the population value!

•  An estimator is called unbiased if b=0 while it is called biased 
otherwise!

€ 

b( ˆ θ ) = E( ˆ θ ) −θ0 = ˆ θ −θ0 = ˆ θ −θ0

Population value

Mean estimate



Examples!
•  The sample mean in an unbiased estimator of the population mean!

•  Exercise: Is the sample variance an unbiased estimator of the 
population variance?!
€ 

x = 1
N

xi,
i=1

N
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1
N
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N
N
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i=1

N

∑
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s2 =
1
N

(xi − x )2
i=1

N

∑ , E[s2] = ???



Examples!
•  Note that functional invariance does not hold. !

•  If you have an unbiased estimator S2 for the population 
variance σ2 and you take its square root, this will NOT be an 
unbiased estimator for the population rms value σ!!

•  This applies to any non-linear transformation including 
division. !

•  Therefore avoid to compute ratios of estimates as much as 
you can.!



Consistent estimators!

•  We can build a sequence of estimators by progressively increasing 
the sample size!

•  If the probability that the estimates deviate from the population 
value by more than ε«1 tends to zero as the sample size tends to 
infinity, we say that the estimator is consistent !



Example!
•  The sample mean is a consistent estimator of the population mean!
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Var[x ] = E[(x −µ)2] = E[( 1
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Var[x ]→ 0 when N →∞



Relative efficiency!

•  Intuition suggests that we should use the estimator that is closer 
(in a probabilistic sense) to the population value. One way to do this 
is to choose the estimator with the lowest variance.!

•  We can thus define a relative efficiency as:!

•  If there is an unbiased estimator that has lower variance than any 
other for all possible population values, this is called the minimum-
variance unbiased estimator (MVUE) !€ 

E[( ˆ ϑ 1 −θ0)2]/E[( ˆ ϑ 2 −θ0)2]

Suppose there are 2 or more unbiased estimators 
of the same quantity, which one should we use? 
(e.g. should we use the sample mean or sample 
median to estimate  the centre of a Gaussian 
distribution?)



Efficient estimators!
•  A theorem known as the Cramer-Rao bound (see slide 45) 

proves that the variance of an unbiased estimator must be 
larger of or equal to a specific value which only depends on 
the sampling strategy (it corresponds to the reciprocal of the 
Fisher information of the sample)!

•  We can thus define an absolute efficiency of an estimator as 
the ratio between the minimum variance and the actual 
variance!

•  An unbiased estimator is called efficient if its variance 
coincides with the minimum variance for all values of the 
population parameter θ0 !



Accuracy vs precision!

•  The bias and the variance 
of an estimator are very 
different concepts (see the 
bullseye analogy on the 
right)!

•  Bias quantifies accuracy!

•  Variance quantifies precision!



Desirable properties of an 
estimator!

  Consistency!
  Unbiasedness!
  Efficiency!

•  However, unbiased and/or efficient estimators do not always 
exist!

•  Practitioners are not particularly keen on unbiasedness. So 
they often tend to favor estimators such that the mean 
square error, MSE=              , is as low as possible 
independently of the bias. !

€ 

E[( ˆ θ −θ0)2]



Minimum mean-square error!

•  Note that, !

•  A biased estimator with small 
variance can then be preferred 
to an unbiased one with large 
variance !

•  However, identifying the 
minimum mean-square error 
estimator from first principles is 
often not an easy task. Also the 
solution might not be unique  
(the bias-variance tradeoff)!

€ 

MSE = E[( ˆ θ −θ0)2] = E[( ˆ θ − E[ ˆ θ ] + E[ ˆ θ ]−θ0)2] =

= E[( ˆ θ − E[ ˆ θ ])2] + (E[ ˆ θ ]−θ0)2] =σ 2( ˆ θ ) + b2( ˆ θ )



Point vs interval estimates!
•  A point estimate of a population parameter is a single value of a 

statistic (e.g. the average height). This in general changes with the 
selected sample.!

•  In order to quantify the uncertainty of the sampling method it is 
convenient to use an interval estimate defined by two numbers 
between which a population parameter is said to lie!

•  An interval estimate is generally associated with a confidence level. 
Suppose we collected many different samples (with the same 
sampling strategy) and computed confidence intervals for each of 
them. Some of the confidence intervals would include the population 
parameter, others would not. A 95% confidence level means that 
95% of the intervals contain the population parameter.!



This is all theory but how do we 
build an estimator in practice?!

Let’s consider a simple (but common) case.

Suppose we perform an experiment where we measure a real-valued 
variable X. 

The experiment is repeated n times to generate a random sample X1, … , 
Xn of independent, identically distributed variables (iid).

We also assume that the shape of the population PDF of X is known 
(Gaussian, Poisson, binomial, etc.) but has k unknown parameters θ1, 
… , θk  with k<n.



The old way: method of moments!

•  The method of moments is a technique for constructing 
estimators of the parameters of the population PDF!

•  It consists of equating sample moments (mean, variance, 
skewness, etc.) with population moments !

•  This gives a number of equations that might (or might not) 
admit an acceptable solution!

•  There is a much better way that we are going to describe 
now!



C. Porciani! Estimation & forecasting! 32!

R.A. Fisher (1890-1962)!

“Even scientists need their heroes, and R.A. Fisher was the hero of 20th 
century statistics” (B. Efron)!

“Fisher was to statistics what Newton was to Physics” (R. Kass)!
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Fisher’s concept of likelihood!

•  “Two radically distinct concepts have been confused under the name of 
‘probability’ and only by sharply distinguishing between these can we state 
accurately what information a sample does give us respecting the population from 
which it was drawn.” (Fisher 1921)!

•  “We may discuss the probability of occurrence of quantities which can be 
observed…in relation to any hypotheses which may be suggested to explain these 
observations. We can know nothing of the probability of the hypotheses…We may 
ascertain the likelihood of the hypotheses…by calculation from observations:…to 
speak of the likelihood…of an observable quantity has no meaning.” (Fisher 1921)!

•  “The likelihood that any parameter (or set of parameters) should have any 
assigned value (or set of values) is proportional to the probability that if this 
were so, the totality of observations should be that observed.” (Fisher 1922)!



Probability of the data versus 
likelihood of the parameters!

•  Suppose you are counting how many cars pass in front of your 
window on Sundays between 9:00 and 9:02 am. Counting experiments 
are generally well described by the Poisson distribution. Therefore, 
if the mean counts are λ, the probability of counting n cars follows 
the distribution:!

•  This means that if you repeat the experiment many times, you will 
measure different values of n following the frequency P(n). Note 
that the sum over all possible n is unity. !

•  Now suppose that you actually perform the experiment once and you 
count 7. Then, the likelihood for the model parameter λGIVEN the 
data is: !
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€ 

P(n | λ) =
λne−λ

n!

€ 

L(λ) = P(7 | λ) =
λ7e−λ

5040



The likelihood function!
•  This is a function of λ only but it is NOT a probability distribution 

for λ! It simply says how likely it is that our measured value of n=7 
is obtained by sampling a Poisson distribution of mean λ. It says 
something about the model parameter GIVEN the observed data.!
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The likelihood function!
•  Let us suppose that after some time you repeat the experiment and 

count 4 cars. Since the two experiments are independent, you can 
multiply the likelihoods and obtain the curve below. Note that now 
the most likely value is λ=5.5 and the likelihood function is 
narrower than before, meaning that we know more about λ.!
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Likelihood for Gaussian errors!
•  Often statistical measurement errors can be described by 

Gaussian distributions. If the errors σi of different 
measurements di are independent:!

•  Maximizing the likelihood corresponds to finding the values of 
the parameters θ= {θ1,…,θn} which minimize the χ2 
function (weighted least squares method).!
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€ 

L(θ) = P(d |θ) =
1
2πσ i

2
exp −

di −mi(θ)( )
2σ i

2
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 i=1
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∏
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−lnL(θ) =
(di −mi(θ))

2

2σ i
2 + const.= χ 2(θ,d)

2i=1

N

∑ + const.



The general Gaussian case!
•  In general, errors are correlated and !

where Cij=<εi εj> is the covariance matrix of the errors. !

•  For uncorrelated errors the covariance matrix is diagonal and 
one reduces to the previous case.!

•  Note that the covariance matrix could also derive from a 
model and then depend on the model parameters. We will 
encounter some of these cases in the rest of the course. !
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€ 

−lnL(θ) =
1
2

di −mi(θ)[ ] Cij
−1 d j −m j (θ)[ ] + const.= χ 2(θ,d)

2j=1

N

∑
i=1

N

∑ + const.



C. Porciani! Estimation & forecasting! 39!

The Likelihood function: a summary!
•  In simple words, the likelihood of a model given a dataset is proportional to 

the probability of the data given the model!

•  The likelihood function supplies an order of preference or plausibility of the 
values of the free parameters θi by how probable they make the observed 
dataset!

•  The likelihood ratio between two models can then be used to prefer one to 
the other!

•  Another convenient feature of the likelihood function is that it is 
functionally invariant. This means that any quantitative statement about the 
θi  implies a corresponding statements about any one to one function of the 
θi by direct algebraic substitution!
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Maximum Likelihood!
•  The likelihood function is a statistic (i.e. a function of the data) which gives 

the probability of obtaining that particular set of data, given the chosen 
parameters θ1, … , θk of the model. It should be understood as a function of 
the unknown model parameters (but it is NOT a probability distribution for 
them)!

•  The values of these parameters that maximize the sample likelihood are 
known as the Maximum Likelihood Estimates or MLE’s.!

•  Assuming that the likelihood function is differentiable, estimation is done by 
solving!

•  On the other hand, the maximum value may not exists at all.!

€ 

∂L(θ1,...,θk )
∂θi

= 0

€ 

∂ lnL(θ1,...,θk )
∂θi

= 0or!



Back to counting cars!
•  After 9 experiments we collected the following data: 7, 4, 2, 6, 4, 5, 

3, 4, 5. The new likelihood function is plotted below, together with a 
Gaussian function (dashed line) which matches the position and the 
curvature of the likelihood peak (λ=4.44). Note that the 2 curves 
are very similar (especially close to the peak), and this is not by 
chance.!
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Score and information matrix!
•  The first derivative of the log-likelihood function with respect to the 

different parameters is called the Fisher score function: !

•  The Fisher score vanishes at the MLE.!

•  The negative of the Hessian matrix of the log-likelihood function with 
respect to the different parameters is called the observed information 
matrix: !

•  The observed information matrix is definite positive at the MLE. Its 
elements tell us how broad is the likelihood function close to its peak 
and thus with what accuracy we determined the model parameters.!
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€ 

Si =
∂ lnL(θ)
∂θi

€ 

Oij = −
∂ 2 lnL(θ)
∂θi ∂θ j



Example!
1 datapoint!

Low information!
Large uncertainty in λ!

9 datapoints!
High information!

Small uncertainty in λ!
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Fisher information matrix!
•  If we took different data, then the likelihood function for the 

parameters would have been a bit different and so its score function 
and the observed information matrix.!

•  Fisher introduced the concept of information matrix by taking the 
ideal ensemble average (over all possible datasets of a given size) of 
the observed information matrix (evaluated at the true value of the 
parameters).!

•  Under mild regularity conditions, it can been shown that the Fisher 
information matrix also corresponds to !

i.e. to the covariance matrix of the scores at the MLE’s.!
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€ 

Fij = −
∂ 2 lnL(θ)
∂θi ∂θ j

€ 

Fij =
∂ lnL(θ)
∂θi

∂ lnL(θ)
∂θ j



Cramér-Rao bound!

•  The Cramér-Rao bound states that, for ANY unbiased 
estimator of a model parameter θi, the measurement error 
(keeping the other parameters constant) satisfies!

•  For marginal errors that also account for the variability of 
the other parameters (see slide 35 for a precise definition), 
instead, it is the inverse of the Fisher information matrix 
that matters and!
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€ 

Δθi ≥
1
Fii

€ 

Δθi ≥ Fii
−1



Fisher matrix with Gaussian errors!
•  For data with Gaussian errors, the Fisher matrix assumes the 

form (the notation is the same as in slide 20)!

where!

(note that commas indicate derivatives with respect to the 
parameters while data indices are understood)!
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€ 

Fij =
1
2
Tr C−1C,i C

−1C, j +C
−1Mij[ ]

€ 

Mij = m,i m, j
T +m, j m,i

T

Information from the signal!Information from the noise!
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Properties of MLE’s!

As the sample size increases to infinity (under weak regularity conditions):!

•  MLE’s become asymptotically efficient and asymptotically unbiased!
•  MLE’s asymptotically follow a normal distribution with covariance matrix (of the 

parameters) equal to the inverse of the Fisher’s information matrix (that is 
determined by the covariance matrix of the data).!

However, for small samples, !

•  MLE’s can be heavily biased and the large-sample optimality does not apply!
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Maximizing likelihood functions!

•  For models with a few parameters, it is possible to evaluate 
the likelihood function on a finely spaced grid and search for 
its minimum (or use a numerical minimisation algorithm).  !

•  For a number of parameters >>2 it is NOT feasible to have a 
grid (e.g. 10 point in each parameter direction, 12 parameters 
= 1012 likelihood evaluations!!!)!

•  Special statistical and numerical methods needs to be used to 
perform model fitting.!

•  Note that typical cosmological problems consider models with 
a number of parameters ranging between 6 and 20.!
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Forecasting!

•  Forecasting is the process of estimating the 
performance of future experiments for which data 
are not yet available!

•  It is a key step for the optimization of 
experimental design (e.g. how large must be my 
survey if I want to determine a particular 
parameter to 1% accuracy?)!

•  The basic formalism has been developed by Fisher 
in 1935 !



C. Porciani! Estimation & forecasting! 50!

Figure of merit!

Figure of merit = 1 / (area of the ellipse) 
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Fisher 4cast (Matlab toolbox)!
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